首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The finite difference approximation of a nonstationary pseudo-advected vorticity equation is proved to yield generalized solutions to the two-dimensional stationary Euler equations with nonvanishing vorticity. This result is obtained by the simultaneous limiting of lattice scale and time.Received: 15 May 2002  相似文献   

2.
《Quaestiones Mathematicae》2013,36(2):199-214
Abstract

In this paper we study the combined sinh-cosh-Gordon equation, which arises in mathematical physics and has a wide range of scientific applications that range from chemical reactions to water surface gravity waves. We employ Lie symmetry analysis along with the simplest equation method to obtain exact solutions based on the optimal systems of one-dimensional subalgebras for the combined sinh-cosh-Gordon equation. Furthermore, conservation laws for the combined sinh-cosh-Gordon equation are derived by employing two different methods; the direct method and new conservation theorem.  相似文献   

3.
In this paper, the one-sided exact boundary null controllability of entropy solutions is studied for a class of general strictly hyperbolic systems of conservation laws, whose negative (or positive) characteristic families are all linearly degenerate. The authors first prove the well-posedness of semi-global solutions constructed as the limit of ε-approximate front tracking solutions to the mixed initial-boundary value problem with general nonlinear boundary conditions and they establish various properties of both the ε-approximate front tracking solutions and such solutions. By means of essential modifications of the strategy suggested by the first author in [17] originally for the local exact boundary controllability in the framework of classical solutions, the one-sided local exact boundary null controllability of entropy solutions can then be realized via boundary controls acting on one side of the boundary, where the incoming characteristics are all linearly degenerate.  相似文献   

4.
Using the classical Lie method we obtain the full Lie point symmetry group of the Aronsson equation in two independent variables. Some group invariant solutions of this equation are found and a conjecture on the Lie point symmetry group of the Aronsson equation in Rn is presented.  相似文献   

5.
The aim of this paper is to develop high-order methods for solving time-fractional partial differential equations. The proposed high-order method is based on high-order finite element method for space and finite difference method for time. Optimal convergence rate O((Δt)2−α+Nr) is proved for the (r−1)th-order finite element method (r≥2).  相似文献   

6.
Summary. This paper considers the questions of convergence of: (i) MUSCL type (i.e. second-order, TVD) finite-difference approximations towards the entropic weak solution of scalar, one-dimensional conservation laws with strictly convex flux and (ii) higher-order schemes (filtered to ``preserve' an upper-bound on some weak second-order finite differences) towards the viscosity solution of scalar, multi-dimensional Hamilton-Jacobi equations with convex Hamiltonians. Received May 16, 1994  相似文献   

7.
We establish global solutions of nonconcave hyperbolic equations with relaxation arising from traffic flow. One of the characteristic fields of the system is neither linearly degenerate nor genuinely nonlinear. Furthermore, there is no dissipative mechanism in the relaxation system. Characteristics travel no faster than traffic. The global existence and uniqueness of the solution to the Cauchy problem are established by means of a finite difference approximation. To deal with the nonconcavity, we use a modified argument of Oleinik (Amer. Math. Soc. Translations 26 (1963) 95). It is also shown that the zero relaxation limit of the solutions exists and is the unique entropy solution of the equilibrium equation.  相似文献   

8.
The objective of this work is to explore a compressible gas-liquid model designed for modeling of well flow processes. We build into the model well-reservoir interaction by allowing flow of gas between well and formation (surrounding reservoir). Inflow of gas and subsequent expansion of gas as it ascends towards the top of the well (a so-called gas kick) represents a major concern for various well operations in the context of petroleum engineering. We obtain a global existence result under suitable assumptions on the regularity of initial data and the rate function that controls the flow of gas between well and formation. Uniqueness is also obtained by imposing more regularity on the initial data. The key estimates are to obtain appropriate lower and upper bounds on the gas and liquid masses. For that purpose we introduce a transformed version of the original model that is highly convenient for analysis of the original model. In particular, in the analysis of the transformed model additional terms, representing well-formation interaction, can be treated by natural extensions of arguments that previously have been employed for the single-phase Navier-Stokes model. The analysis ensures that transition to single-phase regions do not appear when the initial state is a true gas-liquid mixture.  相似文献   

9.
We prove the partial regularity of stable solutions of supercritical elliptic equations. As an application, we prove that any smooth stable entire solution to supercritical equations with pp in a suitable range is radially symmetric.  相似文献   

10.
For a supersonic Euler flow past a straight-sided wedge whose vertex angle is less than the extreme angle, there exists a shock-front emanating from the wedge vertex, and the shock-front is usually strong especially when the vertex angle of the wedge is large. In this paper, we establish the L1 well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge whose boundary slope function has small total variation, when the total variation of the incoming flow is small. In this case, the Lipschitz wedge perturbs the flow, and the waves reflect after interacting with the strong shock-front and the wedge boundary. We first obtain the existence of solutions in BV when the incoming flow has small total variation by the wave front tracking method and then establish the L1 stability of the solutions with respect to the incoming flows. In particular, we incorporate the nonlinear waves generated from the wedge boundary to develop a Lyapunov functional between two solutions containing strong shock-fronts, which is equivalent to the L1 norm, and prove that the functional decreases in the flow direction. Then the L1 stability is established, so is the uniqueness of the solutions by the wave front tracking method. Finally, the uniqueness of solutions in a broader class, the class of viscosity solutions, is also obtained.  相似文献   

11.
Summary. We introduce a new technique for proving a priori error estimates between the entropy weak solution of a scalar conservation law and a finite–difference approximation calculated with the scheme of Engquist-Osher, Lax-Friedrichs, or Godunov. This technique is a discrete counterpart of the duality technique introduced by Tadmor [SIAM J. Numer. Anal. 1991]. The error is related to the consistency error of cell averages of the entropy weak solution. This consistency error can be estimated by exploiting a regularity structure of the entropy weak solution. One ends up with optimal error estimates. Received December 21, 2001 / Revised version received February 18, 2002 / Published online June 17, 2002  相似文献   

12.
We establish C2,αC2,α-estimates for solutions of a class of quasilinear elliptic equations with free boundary and tangential derivative boundary problems. Using this regularity result we show the existence of global solutions to regular shock reflections for the unsteady transonic small disturbance (UTSD) equation. We also present Lipschitz estimates near the degenerate Dirichlet boundary (the sonic boundary) for the UTSD equation.  相似文献   

13.
In this paper we study the asymptotic behavior of globally smooth solutions of the Cauchy problem for the multidimensional isentropic hydrodynamic model for semiconductors in Rd. We prove that smooth solutions (close to equilibrium) of the problem converge to a stationary solution exponentially fast as t→+∞.  相似文献   

14.
Using an integral formula of Droniou and Imbert (2005) for the fractional Laplacian, we define an entropy formulation for fractal conservation laws with pure fractional diffusion of order λ ∈]0, 1]. This allows to show the existence and the uniqueness of a solution in the L framework. We also establish a result of controled speed of propagation that generalizes the finite propagation speed result of scalar conservation laws. We finally let the non-local term vanish to approximate solutions of scalar conservation laws, with optimal error estimates for BV initial conditions as Kuznecov (1976) for λ = 2 and Droniou (2003) for λ ∈]1, 2].  相似文献   

15.
In this paper, we study the continuation of solutions to an equation for surface water waves of moderate amplitude in the shallow water regime beyond wave breaking (in [11], Constantin and Lannes proved that this equation accommodates wave breaking phenomena). Our approach is based on a method proposed by Bressan and Constantin [2]. By introducing a new set of independent and dependent variables, which resolve all singularities due to possible wave breaking, the evolution problem is rewritten as a semilinear system. Local existence of the semilinear system is obtained as fixed points of a contractive transformation. Moreover, this formulation allows one to continue the solution after collision time, giving a global conservative solution where the energy is conserved for almost all times. Finally, returning to the original variables, we obtain a semigroup of global conservative solutions, which depend continuously on the initial data.  相似文献   

16.
We establish a general existence theory for the Cauchy problem associated with a scalar conservation law in one-space dimension. The flux-function is assumed to be nonconvex and we consider nonclassical entropy solutions selected by a kinetic relation. To solve the Cauchy problem, we construct a sequence of approximate solutions using a wave-front tracking scheme. The main difficulty is deriving a uniform estimate on the total variation of the approximate solutions. This is achieved here by introducing a generalized total variation functional, which is decreasing in time and, additionally, reduces to the standard total variation functional when the solutions contain only classical shocks. This functional seems sufficiently robust to be useful for systems as well.Received: June 3, 2002; revised: November 12, 2002  相似文献   

17.
We consider a numerical scheme for a class of degenerate parabolic equations, including both slow and fast diffusion cases. A particular example in this sense is the Richards equation modeling the flow in porous media. The numerical scheme is based on the mixed finite element method (MFEM) in space, and is of one step implicit in time. The lowest order Raviart–Thomas elements are used. Here we extend the results in Radu et al. (SIAM J Numer Anal 42:1452–1478, 2004), Schneid et al. (Numer Math 98:353–370, 2004) to a more general framework, by allowing for both types of degeneracies. We derive error estimates in terms of the discretization parameters and show the convergence of the scheme. The features of the MFEM, especially of the lowest order Raviart–Thomas elements, are now fully exploited in the proof of the convergence. The paper is concluded by numerical examples.  相似文献   

18.
Global solutions of the nonlinear magnetohydrodynamic (MHD) equations with general large initial data are investigated. First the existence and uniqueness of global solutions are established with large initial data in H 1. It is shown that neither shock waves nor vacuum and concentration are developed in a finite time, although there is a complex interaction between the hydrodynamic and magnetodynamic effects. Then the continuous dependence of solutions upon the initial data is proved. The equivalence between the well-posedness problems of the system in Euler and Lagrangian coordinates is also showed.  相似文献   

19.
20.
The Riemann problem for a two-dimensional nonstrictly hyperbolic system of conservation laws is considered. Without the restriction that each jump of the initial data projects one planar elementary wave, ten topologically distinct solutions are obtained by applying the method of generalized characteristic analysis. Some of these solutions involve the nonclassical waves, i.e., the delta shock wave and the delta contact discontinuity, for which we explicitly give the expressions of their strengths, locations and propagation speeds. Moreover, we demonstrate that the nature of our solutions is identical with that of solutions to the corresponding one-dimensional Cauchy problem, which provides a verification that our construction produces the correct unique global solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号