首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bacterial infection poses life-threatening challenge to humanity and stimulates to the researchers for developing better diagnostic and therapeutic agents complying with existing theranostic techniques. Nuclear medicine technique helps to visualize hard-to-diagnose deep-seated bacterial infections using radionuclide-labeled tracer agents. Metronidazole is an antiprotozoal antibiotic that serves as a preeminent anaerobic chemotherapeutic agent. The aim of this study was to develop technetium-99m-labeled metronidazole radiotracer for the detection of deep-seated bacterial infections. Radiosynthesis of 99mTc-metronidazole was carried by reacting reduced technetium-99m and metronidazole at neutral pH for 30 min. The stannous chloride dihydrate was used as the reducing agent. At optimum radiolabeling conditions, ~ 94% radiochemical was obtained. Quality control analysis was carried out with a chromatographic paper and instant thin-layer chromatographic analysis. The biodistribution study of radiochemical was performed using Escherichia coli bacterial infection-induced rat model. The scintigraphic study was performed using E. coli bacterial infection-induced rabbit model. The results showed promising accumulation at the site of infection and its rapid clearance from the body. The tracer showed target-to-non-target ratio 5.57 ± 0.04 at 1 h post-injection. The results showed that 99mTc-MNZ has promising potential to accumulate at E. coli bacterial infection that can be used for E. coli infection imaging.  相似文献   

2.
The optimization of the radiolabeling yield of ciprofloxacin analogous, norfloxacin, with technetium-99m (99mTc) was described. Dependence of the labeling yield of 99mTc–norfloxacin complex on the concentration of norfloxacin, SnCl2·2H2O content, pH of the reaction mixture and reaction time was studied. Norfloxacin was labeled with 99mTc at pH 3 with a labeling yield of 95.4% by using 5 mg norfloxacin, 50 μg SnCl2·2H2O and 30 min reaction time. The formed 99mTc–norfloxacin complex was stable for a time up to 3 h. Biological distribution of 99mTc–norfloxacin complex was investigated in experimentally induced inflammation rats using Staphylococcus aureus (bacterial infection model) and heat killed Staphylococcus aureus and turpentine oil (sterile inflammation model). In case of bacterial infection, the T/NT value for 99mTc–norfloxacin complex was found to be 6.9 ± 0.4 which was higher than that of the commercially available 99mTc–ciprofloxacin under the same experimental condition.  相似文献   

3.
In the current investigation complexation of the gemifloxacin (GIN) with technetium-99 m (99mTc) and its biological evaluation in artificially Streptococcus pneumoniae (S. pneumoniae) infected rats was assessed as potential S. pneumoniae infection radiotracer. Radiochemically the 99mTc-GIN complex was further analyzed in terms of stability in saline, in vitro stability in serum at 37 °C, in vitro binding with S. pneumoniae and biodistribution in artificially S. pneumoniae (living and heat killed) infected rats. The complex was found 97.25 ± 0.25% radiochemically stable in saline at 30 min after reconstitution. The stability of the 99mTc-GIN complex was decreased to 90.50 ± 0.20% within 240 min after reconstitution. In serum the 99mTc-GIN complex showed stable profile with the appearance of 18.85% free tracer within 16 h of incubation. The 99mTc-GIN complex showed saturated in vitro binding with S. pneumoniae after different intervals. Almost five fold uptake was observed in living S. pneumoniae infected muscle of the rats as compared to the inflamed and normal muscle. No significant difference in the uptake of heat killed S. pneumoniae infected, inflamed and normal muscles of the rats. The high RCP yield in saline, in vitro permanence in serum, in vitro binding with living S. pneumoniae and biodistribution in artificially S. pneumoniae infected rats we recommend the 99mTc-GIN as potential S. pneumoniae infection radiotracer.  相似文献   

4.
1-(2-methoxy phenyl) piperazine fragment of WAY100635 or its phenolic analogue, derived from DWAY is used to design the desired structure of 5HT1A receptor imaging agents. In this study a DWAY analogue was labeled with 99mTc-nitrido ([99mTcN]2+) core via dithiocarbamate. 2-(piperazin-1-yl) phenol dithiocarbamate was synthesized by the reaction of 2-(piperazin-1-yl) phenol with an equivalent amount of carbon disulfide in KOH solution then radiolabeled with 99mTc-nitrido core. The final complex was characterized by HPLC and its radiochemical purity was more than 90 %. In vitro stability studies have shown the complex was stable at least 4 h after labeling at room temperature. The n-octanol/water partition coefficient experiment demonstrated log p = 1.34 for 99mTcN–OHPP–DTC. Biodistribution results showed that radio tracer had moderate brain uptake (0.39 ± 0.03 %ID/g at 15 min and 0.29 ± 0.02 %ID/g at 120 min) and good retention, suggesting that this complex may lead to a further development of a radiotracer with specific binding to 5-HT1A receptor.  相似文献   

5.
The optimization of the radiolabeling yield of cefazolin with 99mTc was described. Dependence of the labeling yield of 99mTc-cefazolin complex on the amounts of cefazolin and SnCl2·2H2O, pH and reaction time was studied. Cefazolin was labeled with 99mTc with a labeling yield of 89.5 % by using 1 mg cefazolin, 5 μg SnCl2·2H2O at pH 4 and 30 min reaction time. The radiochemical purity of 99mTc-cefazolin was evaluated with ITLC. The formed 99mTc-cefazolin complex was stable for a time up to 3 h, after that the labeling yield decreased 64.0 % at 8 h. Biological distribution of 99mTc-cefazolin complex was investigated in experimentally induced inflammation mice, in the left thigh, using Staphylococcus aureus (bacterial infection model) and turpentine oil (sterile inflammation model). Both thighs of the mice were dissected and counted and the ratio of bacterial infected thigh/contralateral thigh was then evaluated. In case of bacterial infection, T/NT for 99mTc-cefazolin complex was 8.57 ± 0.4 after 0.5 h, which was higher than that of the commercially available 99mTc-ciprofloxacin under the same experimental conditions. The ability of 99mTc-cefazolin to differentiate between septic and aseptic inflammation indicates that 99mTc-cefazolin could undergo further clinical trials to be used for imaging sites of infection.  相似文献   

6.
Two types of technetium-99m complexes: (i) with the Hynic ligand linked to Substance P(1–11) and (ii) of the type ‘4 + 1’ consisting of tetradentate tripodal chelator tris(2-mercaptoethyl)-amine and monodentate isocyanide ligand previously coupled with Substance P(1–11), have been prepared on the n.c.a. scale. The obtained conjugates exhibit different lipophilicity and high stability in neutral aqueous solutions, even in the presence of excess concentration of histidine/cysteine competitive standard ligands. The conjugate (99mTc(NS3)(CN))2–SP containing two technetium-99m species in the molecule may be expected to be an extremely good diagnostic radiopharmaceutical.  相似文献   

7.
An adopted method for the preparation of high radiochemical purity 99mTc-ursodeoxycholic acid (UDCA) was conducted with a high radiochemical yield up to 97.5 %. The reaction proceeds well using 2 mg UDCA, 50 μg tin chloride in solution of pH 8 at room temperature for 30 min. The radiochemical yield was up to 97.5 % as pure as 99mTc-UDCA. Different chromatographic techniques (paper chromatography and electrophoresis) were used to evaluate the radiochemical yield and purity of the labeled product. Biodistribution studies were carried out in Albino Swiss mice at different time intervals after administration of 99mTc-UDCA. The uptake of 99mTc-UDCA in the liver gave the chance to diagnose it. The results indicate that the labeled compound cleared from the systematic circulation within 2 h after administration and majority of organs showed significant decrease in uptake of 99mTc-UDCA. Finally, the liver uptake was high and the results indicate the possibility of using 99mTc-UDCA for hepatobiliary imaging.  相似文献   

8.
A novel quinoline derivative, 2,2′-[(5-chloro-8-hydroxyquinoline-7-yl) methylazanediyl] diacetic acid (CHQMADA) was labeled with 99mTc using SnCl2·2H2O as a reducing agent to give a complex with a labeling yield 94 %. Also [99mTc(H2O)3(CO)3]+ was prepared by heating at 100 °C for 30 min using 2 mg CHQMADA at pH 8 to give a labeling yield >99 %. 99mTc-(CO)3 CHQMADA and 99mTc-Sn(II)-CHQMADA showed tissue uptake (target to non target T/NT = 6.80 ± 0.22) and (T/NT = 5.65 ± 0.34) respectively in Escherichia coli induced infection, which is higher than the commercially available 99mTc-ciprofloxacin (T/NT = 3.80 ± 0.80). In conclusion, both complexes were able to differentiate between septic and aseptic inflammation with superiority of [99mTc-(CO)3 CHQMADA].  相似文献   

9.
Radiolabeled fatty acids as myocardial metabolic agent are used for detecting ischemic heart disease, however, no 99mTc-labeled fatty acids have potential use in clinical diagnosis. In this work, five fatty acid analogues labeled with 99mTc were firstly synthesized and characterized, their biological behaviors were investigated. All Radiotracers had good stability when incubated in rat serum for 3 h at 37 °C. 99mTc -CpT-12-ODPPA (8b) showed higher initial myocardial uptake (8.17% ID/g at 1 min postinjection) and good heart/blood ratio (2.58 at 30 min postinjection). 99mTc-11-dpa-OUFA (2b) as positively charged lipophilic compounds had reasonable heart uptake (5.59% ID/g at 1 min postinjection) and good retention (1.89% ID/g at 60 min postinjection). Unfortunately, no great improvement was obtained by the five 99mTc-labeled fatty acid analogues for the short myocardial retention and poor heart/liver ratios.  相似文献   

10.
Pyrroloquinoline quinone (PQQ) is a powerful neuroprotectant that specifically binds to brain NMDA receptors and inhibits excitotoxicity. Imaging this binding reaction in the brain remains a long sought goal in this field of study, and one of the primary challenges remaining is enabling soluble labeled PQQ to pass the blood–brain barrier (BBB). Previously, our group successfully labeled PQQ with Technetium-99m (99mTc), a metastable nuclear isomer used in radioactive isotope medical tests. In this work, we determined the specific binding of 99mTc-PQQ and NMDAR by radioligand receptor assay. Ebselen (EB) and MK-801 both effectively inhibited 99mTc-PQQ binding. We then investigated methods of opening the BBB using mannitol to enable entry to the brain by 99mTc-PQQ. Our results showed that 7.5 mL/kg of 20 % mannitol effectively opened the BBB and 20 min was the optimum treatment time. Competition studies showed that mannitol did not affect the specific binding between 99mTc-PQQ and NMDA receptors. Using this method, the amount of 99mTc-PQQ uptake and retention was increased most significantly in the hippocampus and cortex, and re-opening the BBB did not affect binding. Together, our results demonstrate that the use of mannitol to open the BBB may contribute significantly to improving image quality by increasing the uptake amount of a water-soluble agent in brain.  相似文献   

11.
Phytochlorin [21H, 23H-Porphine-7-propanoicacid, 3-carboxy-5-(carboxymethyl)13-ethenyl-18-ethyl-7,8-dihydro-2,8,12,17-tetramethyl-,(7S,8S)] was labeled with 99mTc and the factors affecting the labeling yield of 99mTc-phytochlorin complex were studied in details. At pH 10, 99mTc-phytochlorin complex was obtained with a high radiochemical yield of 98.4 ± 0.6 % by adding 99mTc to 100 mg phytochlorin in the presence of 75 μg SnCl2·2H2O after 30 min reaction time. The molecular modeling study showed that the structure of 99mTc-phytochlorin complex presents nearly linear HO–Tc–OH unit with an angle of 179.27° and a coplanar Tc(N1N2N3N4) unit. Biodistribution of 99mTc-phytochlorin complex in tumor bearing mice showed high T/NT ratio (T/NT = 3.65 at 90 min post injection). This preclinical study showed that 99mTc-phytochlorin complex is a potential selective radiotracer for solid tumor imaging and afford it as a new radiopharmaceutical suitable to proceed through the clinical trials for tumor imaging.  相似文献   

12.
The feasibility of using tetragonal nano-zirconia (t-ZrO2) as an effective sorbent for developing a 99Mo/99mTc chromatographic generator was demonstrated. The structural characteristics of the sorbent matrix were investigated by different analytical techniques such as XRD, BET surface area analysis, FT-IR, TEM etc. The material synthesized was nanocrystalline, in tetragonal phase with an average particle size of ~7 nm and a large surface area of 340 m2 g?1. The equilibrium sorption capacity of t-ZrO2 is >250 mg Mo g?1. The present study indicates that 99Mo is both strongly and selectively retained by t-ZrO2 at acidic pH and 99mTc could be readily eluted from it, using 0.9% NaCl solution. A 9.25 GBq (250 mCi) t-ZrO2 based chromatographic 99Mo/99mTc generator was developed and its performance was repeatedly evaluated for 10 days. 99mTc could be eluted with >85% yield having acceptable radionuclidic, radiochemical and chemical purity for clinical applications. The compatibility of the product in the preparation of 99mTc labeled formulations such as 99mTc-EC and 99mTc-DMSA was evaluated and found to be satisfactory.  相似文献   

13.
The aim of this study is the formulation of a new radiopharmaceutical for imaging solid tumor bearing. Gemcitabine is a nucleoside analogue used as chemotherapeutic agent. Gemcitabine was formulated and radiolabeled with one of the most important diagnostic radioactive isotopes (technetium-99m) to be investigated in solid tumor imaging. The labeling parameters such as gemcitabine amount, stannous chloride amount, pH of the reaction mixture, and reaction time were optimized. 99mTc–gemcitabine was prepared at pH 9 with a maximum labeling yield of 96 ± 0.3 % without any notable decomposition at room temperature over a period of 8 h. The preclinical evaluation and biodistribution in solid tumor bearing mice showed that 99mTc–gemcitabine had solid tumor selectivity, preclinical high biological accumulation in tumor cells and high retention. Tumor/normal muscle (T/NT) ratios increased with time showing high T/NT ratio (T/NT = 4.9 ± 0.27 at 120 min post injection) and high Tumor/Blood ratio (3.4 ± 0.06), suggesting 99mTc–gemcitabine as a novel solid tumor imaging agent.  相似文献   

14.
Ritodrine (a beta-2 adrenergic receptor agonist) was successfully labeled with 125I via direct electrophilic substitution reaction at ambient temperature. 125I-ritodrine was obtained with a maximum labeling yield of 97 ± 0.163 % and in vitro stability up to 24 h. Biodistribution studies showed that maximum in vivo uptake of 125I-ritodrine in lungs was 20.4 ± 0.22 % injected activity/g tissue at 1 h post-injection, whereas the clearance from mice appeared to proceed mainly via the renal pathway. 125I-ritodrine is not a blood product and so it is more safe than the currently available 99mTc-MAA, and its lung uptake is higher than that of the recently discovered 99mTc(CO)5I and 99mTc-DHPM. As a conclusion, radioiodinated ritodrine could be used as a novel radiopharmaceutical for lung perfusion scan safer than the currently available 99mTc-MAA and more potential than the recently discovered 99mTc(CO)5I and 99mTc-DHPM.  相似文献   

15.
The radiochemistry of technetium-99 is reviewed and the different measurement techniques are compared. Experimental results on sorption of technetium on two different types of ion exchange resins using99mTc and95mTc as chemical yield tracers are presented. Spectra calibrations of liquid scintillation counter using95mTc as chemical yield tracer of99Tc are discussed.  相似文献   

16.
99mTc-roxifiban was obtained in a high radiochemical yield (98.4%) by complexing ~750 MBq 99mTc with 2.5 mg roxifiban in the presence of 150 µg SnCl2·2H2O. Factors affecting the labelling yield were investigated and optimized. The complex was lipophilic and stable in saline and serum for more than 8 h. The complex structure prediction and molecular docking to its target activated GPIIb/IIIa receptor were performed. The tracer in vitro binding to activated platelets was high (27–32%). In vivo evaluation was performed through clearance, biodistribution and imaging studies in rats. All results supported the usefulness of the tracer as thrombus imaging agent.  相似文献   

17.
Radiolabeled molecules have an important role to evaluate tumor characteristics such as aggressiveness, and to identify the effectiveness of cancer treatments such as chemotherapy and radiotherapy. Various radionuclide (18F, 99mTc, 124I) labeled molecules can be used apoptosis detection by estimating decrescendos cell viability after therapy. 99mTc-tetrofosmin which is used as a myocardial perfusion imaging agent in routine and at the same time is known to accumulate in various tumors including breast tumor. The aim of this study was to assess the utility of 99mTc-tetrofosmin for monitoring the early response of MCF-7 breast cancer to chemotherapy. To evaluate the role of 99mTc-tetrofosmin in vitro chemotherapy, the uptake ratio was determined using MCF-7 breast cancer line after the cells had been treated with cisplatin. When we examined the apoptotic ratios which induced with different dose of cisplatin in MCF-7 breast cancer cells by using Annexin V and TUNEL methods, it was observed that the rate of apoptosis increased with soaring dose. The uptake rates of 99mTc-tetrofosmin in MCF-7 cell line in the chemotherapeutic groups were lower than it is in the control group (p < 0.01). The negative correlation between uptake ratios and apoptotic rates shows that 99mTc-tetrofosmin may be used a radiopharmaceutical for evaluating chemotherapy response. 99mTc-tetrofosmin might be probably useful as an imaging agent for estimation of early chemotherapy response in breast cancer.  相似文献   

18.
The development of technetium-99m-labelled dihydrotetrabenazine (DTBZ) derivative for vesicular monoamine transporter 2 (VMAT2) tracing could be a benefit for single photon emission computed tomography (SPECT) imaging due to easy labelling chemistry and great availability through nuclide generator system. Here, we successfully prepared a technetium-99m-labelled DTBZ derivative and subsequently evaluated its biological activity targeting VMAT2. A novel combination of the bisaminoethanethiol (BAT) chelator scaffold with the biologically active DTBZ vector was performed to synthesize the labelling precursor BAT-P-DTBZ, and it was accomplished in six steps. The technetium-99m labelling was carried out in the radiochemical study of BAT-P-DTBZ conjugate, and the radiolabelling conditions were investigated and optimized. Under the optimized labelling condition, 99mTc-BAT-P-DTBZ was acquired with a good radiochemical purity of above 95 %. The quality control test showed that 99mTc-BAT-P-DTBZ is stable over 6 h and it has a suitable lipophilicity, suggesting successful appositeness for the needs of routine biological evaluation experiments. The in vitro biological evaluation revealed that 99mTc-BAT-P-DTBZ could bind to VMAT2 sites. The in vivo biodistribution study clearly indicated that the pancreas (VMAT2-enriched region) displays relatively high uptake of 99mTc-BAT-P-DTBZ among all organs in mice. The specific VMAT2 binding signal of 99mTc-BAT-P-DTBZ was separately detected in the in vitro and in vivo biological evaluation. Therefore, 99mTc-BAT-P-DTBZ might be a potential imaging agent for monitoring VMAT2 binding sites in the pancreas.  相似文献   

19.
Polyamines are essential for the growth and survival of all cells with biosynthesis and transportation of polyamines being very active in tumors. With the aim of developing a new tumor imaging agent, the endogenous polyamine, spermine was labeled with 99mTc, and its characters were also evaluated via in vitro and in vivo studies. 99mTc-labeled spermine probe (99mTc-spermine) was synthesized by the direct pretinning procedure and the labeling procedure was optimized with regard to the pH, reaction time, amounts of spermine and SnCl2. The stability of the 99mTc-spermine and its capacity to accumulate into 4T1 tumor cells were also evaluated. Biodistribution of 99mTc-spermine was studied in 4T1 tumor-bearing mice. In the optimal conditions, the whole radiosynthesis was accomplished within 10 min with a decay-corrected yield of 96.5 ± 1.3 % and radiochemical purity of >95 %.99mTc-spermine was stable at both 37 and 4 °C for at least 6 h. In vitro tests revealed that the ability of 99mTc-spermine to penetrate in 4T1 tumour cells and an excess of spermine blocked the accumulation of the compound in the models. Biodistribution studies showed a high tumor uptake peaked at 30 min post-injection with 1.82 ± 0.19 % ID%/g. The tumor to muscle uptake ratios of the probe were 3.60 ± 0.51, 4.48 ± 0.29, 4.82 ± 0.18, 5.64 ± 0.10, respectively at 30 min, 1, 2 and 4 h postinjection. Block studies indicated that 99mTc-spermine had specific binding of tumor via polyamine transport systems. 99mTc-spermine is a promising radiopharmaceutical in tumor imaging. Further studies are required to determine the usability of 99mTc–spermine for diagnosis purposes.  相似文献   

20.
On the base of property to enter into myocardial cells as a calcium channel blocker, verapamil was labeled with technetium-99m in order to investigate the possibility to obtain new radiopharmaceutical for myocardial imaging. The conditions of labeling verapamil with technetium-99m for different ammounts of stannous(II) ion, mannitol, cystein and pH range 2.5–3.5 were examined. Investigation of radiochemical purity (>95%) and biodistribution of 99mTc-verapamil in rats showed that it was stable during 2 hours after labeling. Accumulation of 99mTc-verapamil in heart was 1.2% and in liver 9.4%, 5 minutes after injection. Biodistribution of 99mTc-verapamil in rats in conditions of stress, pharmacologically caused by dipiridamol, showed that the elimination of 99mTc-verapamil from the heart was slower related to the control group. In the group of rats previously treated with isoproterenol uptake of 99mTc-verapamil in heart was lower related to the control group (0.7% versus 1.0%) 5 minutes after injection. Lipophilicity of 99mTc-verapamil was examined by determination of partition coefficient (log P = 0.62) and protein binding (79%). Imaging studies on dogs provided relatively good myocardial images with partially overlap of activity in the lung and liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号