首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As one of the candidate coating materials for a melting crucible, yttrium oxides were deposited on graphite and niobium substrates using slurry and plasma spraying methods. Thermal cycling tests and interaction studies between U–Zr/U–Zr–RE fuel melt and the Y2O3 coatings were carried out to evaluate the performance as reusable coatings for a melting crucible. A multi‐layer coating method was also applied to overcome the issue of a thermal expansion mismatch between the coating and substrate. The results showed that the plasma‐sprayed coatings showed a good consolidation after deposition compared to slurry coating. The plasma‐sprayed Y2O3 coating on the niobium substrate showed better thermal cycling resistance than those coated on a graphite substrate. The proposed TaC/Y2O3 double‐layer coating which was plasma‐sprayed on the niobium substrate showed improved characteristics with no reaction layer formation and no separation from the substrate after the interaction with the U–Zr–RE melt. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Metal fuel slugs of U–Zr alloys for a sodium-cooled fast reactor (SFR) have conventionally been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents, such as Am, are problematic in a conventional injection casting method. As an alternative fabrication method, low pressure gravity casting has been developed. Casting soundness, microstructural characteristics, alloying composition, density, and fuel losses were evaluated for the following as-cast fuel slugs: U–10 wt% Zr, U–10 wt% Zr–5 wt% RE, and U–10 wt% Zr–5 wt% RE–5 wt% Mn. The U and Zr contents were uniform throughout the matrix, and impurities such as oxyen, carbon, and nitrogen satisfied the specification of total impurities less than 2,000 ppm. The appearance of the fuel slugs was generally sound, and the internal integrity was shown to be satisfactory based on gamma-ray radiography. In a volatile surrogate casting test, the U–Zr–RE–Mn fuel slug showed that nearly all of the manganese was retained when casting was done under an inert atmosphere.  相似文献   

3.
The effects of Y2O3 on the microstructure, phase composition of the coatings, microhardness and wear resistance of cobalt‐based composite coatings prepared by laser cladding were investigated. The TA15 titanium alloy was selected as substrate which the cobalt‐based composite powder with different content of Y2O3 was cladded on. The microstructure of the coatings was observed by scanning electron microscope (SEM) and metallurgical microscope. The phase structure of the coatings was determined by X‐ray diffraction (XRD), and the microhardness and wear resistance of the coatings were measured by hardness tester and wear testing machine. The results show that the rare earth oxide Y2O3 can refine and purify the microstructure of the coatings, reduce the porosities and cracks and improve compactness of the coatings. Moreover the addition of Y2O3 improves the microhardness of the coatings and reduces the friction coefficient, thus improving the wear property of the coatings. And the wear resistance of the coating with Y2O3 has improved about 50 times; the highest value of microhardness in the coating is HV1181.1. And 0.8 wt% content of Y2O3 in the coating is the best choice for improving the microhardness and wear resistance of the coating. It is feasible to improve the microstructure and tribological properties of laser cladding coatings by adding of Y2O3. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The Y2O3 nano-film is coated on the surface of the spherical spinel LiMn2O4 by precipitation method and subsequent heat treatment at 550 °C for 5 h in air. The structure and performance of the bare LiMn2O4 and Y2O3-coated LiMn2O4 are characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis X-ray spectroscopy, galvanostatic charge–discharge, cyclic voltammetry, and impedance spectroscopy. It has been found that the addition of Y2O3 does not change the bulk structure of LiMn2O4, and the thickness of the Y2O3 coating layer is approximate to 3.0 nm. The 1 wt% Y2O3-coated LiMn2O4 electrode reveals excellent cycling performance with 80.3 % capacity retention after 500 cycles at 1 C at 25 °C. When cycling at elevated temperature 55 °C, the as-prepared sample still shows 76.7 % capacity retention after 500 cycles. These remarkable improvements indicate that thin Y2O3 coating on the surface of LiMn2O4 is an effective way to improve the electrochemistry performance. Besides, the suppression of Mn dissolution into the electrolyte via the Y2O3 coating layer can be accounted for the improved performances.  相似文献   

5.
The homogeneous chemical composition ceria–zirconia–alumina (Ce–Zr–Al–Ox) nano-alloy were successfully synthesized by surfactant-assisted parallel flow co-precipitation method and applied as supports for low temperature CO oxidation. The experiment conditions were studied in detailed. At 0.92 wt% Pd loading, 30,000 ppm CO could be completely oxidized to CO2 at 30 °C at a WHSV of 4,380 ml g?1 h?1 over the Pd/Ce–Zr–Al–Ox (nCe:nZr = 3:1) catalyst. Pd/Ce–Zr–Al–Ox catalysts were systematical studied by mean of BET, XRD and TEM analysis. XRD characterization showed that zirconium element entered into cubic structure of ceria and leaded to structure distortion. Addition of aluminum increased specific surface area of ceria–zirconia solid solution substantially. The average pore diameter of Ce–Zr–Al–Ox support palladium catalysts were the key impact factor for CO oxidation. When the Pd/Ce–Zr–Al–Ox catalysts had highly dispersed palladium nanoparticles, large average pore diameter, suitable surface area and pore volume, the activity of CO oxidation was the best.  相似文献   

6.
In order to prepare high proton conducting oxide with high chemical stability against CO2 at 600–800 °C, preparation of BaCe0.9?xZrxY0.1O3?δ was examined. Almost single-phase could be prepared for the specimens with x = 0.0–0.2 by Pechini method. Reaction kinetics between BaCe0.9?xZrxY0.1O3?δ and CO2 could be explained by Jander model. With increasing Zr content up to 0.2, apparent rate constant determined from Jander plot decreased by about one order, showing improvement of kinetic stability against CO2. It was also clarified that influence of partial Zr substitution on electrical property was slight, leading to the conclusion that BaCe0.7Zr0.2Y0.1O3?δ exhibited both high kinetic stability against CO2 and relatively high proton conduction.  相似文献   

7.
Metal fuel slugs of U–Zr alloys for a sodium-cooled fast reactor (SFR) have been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents such as Am can cause problems in a conventional injection casting method. Therefore, in this study, several injection-casting methods were applied to evaluate the volatility of the metal-fuel elements and control the transport of volatile elements. Mn was selected as a volatile surrogate alloy since it possesses a total vapor pressure equivalent to that of minor actinide-bearing fuels for SFRs. U–10 wt% Zr and U–10 wt% Zr–5 wt% Mn metal fuels were prepared, and the casting processes were evaluated. The casting soundness of the fuel slugs was characterized by gamma-ray radiography and immersion density measurements. Inductively coupled plasma atomic emission spectroscopy was used to determine the chemical composition of fuel slugs. Fuel losses after casting were also evaluated according to the casting conditions.  相似文献   

8.
To determine the composition of niobium–rare-earth ores by atomic emission spectrometry and inductively coupled plasma mass spectrometry, two procedures are developed for sample preparation based on autoclave decomposition and flux fusion. Autoclave decomposition is carried out in a mixture of HF and HNO3 at a temperature of up to 220°C and a pressure of up to 160 atm using a developed system with resistive heating. Subsequent evaporation to dry salts ensures the removal of F ions and silicon as SiF4. The residue is dissolved in a mixture of HCl and H2O2 at 160°C under elevated pressure. The resulting solutions (10% with respect to HCl with the addition of H2O2) are diluted before measurements. The dissolution process is monitored for each sample using stable highly enriched isotopes of 91Zr, 100Mo, 149Sm, and 178Hf. The second procedure is based on fusing samples with a mixture of Na2CO3 and Na2B4O7 at 1050°C in a muffle furnace and dissolving the resulting melt in a mixture of HCl and H2O2. The procedures were tested using the national (NFS-23) and foreign standard samples of composition (OREAS-462, 463, 464, 465, Australia) and real samples of niobium–rare-earth ores.  相似文献   

9.
To improve the initial corrosion resistance and then make the degradation rate of magnesium alloys to meet the biomedical application, crack-free CaO–P2O5–SrO–Na2O bioglass-ceramic coatings were synthesized on AZ31 magnesium alloy substrates using a sol–gel dip-coating technique followed by a heat-treatment in the temperature range of 400–500 °C. The effects of heat-treatment on the phase constituents, surface characteristics and corrosion resistances of the coatings were investigated. It was shown that the crystallization of Ca2P2O7 occurred after the glass was treated at 400 °C. As the temperature increased from 400 °C to 450 °C, besides main phase Ca2P2O7, β-Ca(PO3)2 and Ca4P6O19 were identified as minor crystal phases in the glass–ceramic. No new phase was detected with the temperature increasing to 500 °C except for the further crystallization. Meanwhile, the water contact angles of the coatings decreased with the increase of heat-treatment temperature due to the great crystallization. The corrosion resistances of the coated magnesium alloys were studied by electrochemical corrosion techniques in the simulated body fluid. The results revealed that the coating heat-treated at 400 °C exhibited superior corrosion resistance because of less crystallization, suggesting that the calcium phosphate bioglass–ceramic coating can provide effective protection for magnesium alloy substrate to control its initial degradation in vivo and maintain the desired mechanical properties.  相似文献   

10.
Conduction band edge d-states are compared for complex oxides: (i) mixed tetravalent–trivalent ZrO2–Y2O3 alloys, (ii) tetravalent Zr(Hf)O2–TiO2 alloys, and (iii) trivalent La scandate and aluminate. Low Y2O3 content cubic ZrO2–Y2O3 alloys display two crystal-field split 4d-features in O K1 spectra. Alloys with higher Y2O3 content, as well as Zr(Hf)O2–TiO2 alloys display increased d-state multiplicity. O K1 spectra of perovskite-structured LaScO3 and LaAlO3 indicate Jahn–Teller d-state term-splittings with contributions from both trivalent atomic species.  相似文献   

11.
High-temperature electrochemical synthesis and currentless transfer in molten salts were used to obtain coatings constituted by carbides of refractory metals (Mo2C, Cr7C3, NbC, and TaC). It was found that the Mo2C/Mo composite synthesized from a chloride-carbonate-molybdate melt has the highest catalytic activity. It was shown that the Mo2C catalytic coating preserves its properties for at least 5000 h of tests. The protective properties of refractory metal carbides of composition Cr7C3, NbC, and TaC significantly improve the corrosion resistance of steel articles in concentrated solutions and raise their wear resistance by an order of magnitude.  相似文献   

12.
通过静电纺丝技术和热处理制备了Li0.35Zn0.3Fe2.35O4纳米纤维和碳纳米纤维,并将它们各自均匀分散在硅橡胶基质中,测量了相应复合体在2~18GHz频率范围内的相对复介电常数和复磁导率,并根据传输线理论评估了由它们所构成的单层和双层结构吸波体的微波吸收特性。结果显示由于Li0.35Zn0.3Fe2.35O4纳米纤维与碳纳米纤维的电磁特性的有机结合,双层吸波体的微波吸收性能明显优于同厚度的单层吸波体。当以厚为1.8mm的Li0.35Zn0.3Fe2.35O4纳米纤维/硅橡胶复合体为吸收层和厚为0.2mm的碳纳米纤维/硅橡胶复合体为匹配层时,双层吸波体的反射率在13.9GHz达到一个最小值-47.8dB,反射率低于-10dB的吸收带宽为8.8GHz,频率范围为9.2~18GHz,反射率小于-20dB的频率范围为11.5~18GHz,带宽为6.5GHz,覆盖整个Ku波段。优化设计的双层吸波体有望作为一种轻质高效的Ku波段微波吸收材料。  相似文献   

13.
Al2O3, Al2O3/Al and Al2O3–Al graded coatings were fabricated on China low activation martensitic steel and silicon substrates by RF magnetron sputtering. The coating composition and cross‐section morphologies were investigated using X‐ray photoelectron spectroscopy, Auger electron spectroscopy and field‐emission scanning electron microscopy. The mechanical properties of the coatings were studied using nanoindentation, wafer‐curvature measurements and microscratch tests. The results show that usable Al2O3–Al graded coatings could be fabricated. With a more continuous compositional gradient, the interface zone was more compact. The hardness and elastic modulus of Al2O3–Al graded coatings were less than those of Al2O3 coatings, but greater than those of Al2O3/Al coatings. After annealing at 773 K for 3 h, the hardness of Al2O3–Al graded coating showed a small increase. The residual stresses in Al2O3–Al graded coatings declined to about 0.3 GPa, compared with the 6.6 GPa for Al2O3 coating. The adhesion of Al2O3 was improved by deposition of Al or Al compositional gradient oxide layers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
通过静电纺丝技术和热处理制备了Li0.35Zn0.3Fe2.35O4纳米纤维和碳纳米纤维,并将它们各自均匀分散在硅橡胶基质中,测量了相应复合体在2~18 GHz频率范围内的相对复介电常数和复磁导率,并根据传输线理论评估了由它们所构成的单层和双层结构吸波体的微波吸收特性。结果显示由于Li0.35Zn0.3Fe2.35O4纳米纤维与碳纳米纤维的电磁特性的有机结合,双层吸波体的微波吸收性能明显优于同厚度的单层吸波体。当以厚为1.8 mm的Li0.35Zn0.3Fe2.35O4纳米纤维/硅橡胶复合体为吸收层和厚为0.2mm的碳纳米纤维/硅橡胶复合体为匹配层时,双层吸波体的反射率在13.9 GHz达到一个最小值-47.8 dB,反射率低于-10 dB的吸收带宽为8.8 GHz,频率范围为9.2~18 GHz,反射率小于-20 dB的频率范围为11.5~18 GHz,带宽为6.5 GHz,覆盖整个Ku波段。优化设计的双层吸波体有望作为一种轻质高效的Ku波段微波吸收材料。  相似文献   

15.
Adding polyethylene glycol (PEG) with different molecular weights, a usual acid-catalyzed sol–gel was modified to prepare single-layer antireflective SiO2 coatings with high and broadband transmittance and relatively better hardness. The test results of atomic force microscope and field emission scanning electron microscope show that the addition of PEG significantly affects the porosity and surface morphology of the coating layer. Due to the addition of PEG, the surface of the coatings presents groove-like and their porosity is increased, both of which contribute to the increase in transmittance. In the case of same PEG mass, PEG4000 modified coating has higher porosity and higher transmittance than PEG1000 modified one. In the present paper, the reflectance of samples for both sides was tested by ultraviolet–visible–near-infrared spectrophotometer (LAMBDA 950). The best coating’s reflectance can be decreased below 5 % from 460 to 1,740 nm. The transmittance peak value of the substrate is 90.6 % and its average value is 90.0 %, while the peak value of the best coating can reach up to 99.4 % and its average value is 95.5 % which increased by 5.5 % from wavelength of 325 to 1,000 nm. Hardness measurements show that the coatings have relatively better hardness.  相似文献   

16.
Nanocrystalline tantalum carbide (TaC) particles of average size ~15 nm dispersed in silica matrix, have been synthesized by the carbothermal reduction of Ta2O5 over a range of temperature 1,100–1,360 °C in Ar atmosphere. Investigation of the stability diagram of carbon saturated Ta–O–N system suggests that the TaC phase can be successfully synthesized within the SiO2 matrix when the partial pressure of O2 and N2 are restricted to approximately lower than 1.25 and 0.0001 atm. respectively. Two different synthesis routes are investigated in the present study which differ fundamentally in the order of addition of the precursors, tetraethyl orthosilicate (TEOS) and tantalum isopropoxide (Ta-iso). Rietveld refinement analyses of the powder X-ray diffraction data are carried out for the quantitative estimation of the two phases in the samples. The yield of TaC increases from 18 to 52 % when both TEOS and Ta-iso are added simultaneously to the water compared to the process where TEOS is added first to the water followed by the delayed addition of Ta-iso. Samples are further characterized by field emission scanning electron microscopy and high resolution transmission electron microscopy.  相似文献   

17.
Near-infrared (NIR) quantum cutting phosphors serve as a potential material for fabricating photovoltaic spectral convertors. In many cases, quantum cutting phosphors are obtained via a wet chemical method coupled with a post-annealing treatment—a very costly process. In this report, we used continuous flame spray pyrolysis (FSP) for fabricating Y2O3:Tb3+–Yb3+ quantum-cutting phosphors without any post-treatment. Based on characterizations by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, we found that as-synthesized Y2O3:Tb3+–Yb3+ phosphors exhibit hollow and shell-like micro-structures composed of highly crystalline and pure cubic-phase nanoparticles (< 50 nm). Photoluminescence studies of the phosphors revealed that NIR emissions appeared with the introduction of Yb to Y2O3:Tb3+. Phosphor size was successfully controlled by managing the concentration of the metal precursor solution for FSP. The Y2O3:Tb3+–Yb3+ phosphors were then embedded into transparent poly-ethylene-co-vinyl acetate (EVA) film to form a spectral convertor. The composite films of Y2O3:Tb3+–Yb3+ phosphors and poly-EVA were found to be highly transparent in the visible range (> 500 nm), making them suitable as spectral photovoltaic convertors.  相似文献   

18.
This article establishes the relationship between the chemical composition, temperature and viscosity of glasses obtained from the four sludge treatment plants of urban and industrial wastewater from the Nile Delta in Egypt. In order to determine the working conditions of these glasses and their growth temperature, different techniques have been used: differential thermal analysis, hot stage microscopy and dilatometry. We used a prototype of hot stage microscopy, with the help of an image analysis programme developed in the present study. The chemical composition of major oxides sludge ranging from: SiO2 (36–48 wt%), Al2O3 (9–16 wt%), CaO (5–25 wt%), P2O5 (1.5–11 wt%), and Fe2O3 (~9 wt%), this composition is close to a basalt rock, being necessary to incorporate some raw materials to adjust it to the basalt rock that has a good viscosity-temperature curve. The glass transition temperatures of the four glasses obtained vary between 650 and 725 °C and the growth occurs between 938 and 1,033 °C. We also obtained the viscosity–temperature curves with the aid of the hot stage microscopy that has allowed us to determine the working temperatures of the four glasses, ranging from 926 to 1,419 °C, depending on the type of forming process used.  相似文献   

19.
To protect carbon/carbon (C/C) composites from oxidation at high temperature, a nano SiC?CMoSi2 (SiC n ?CMoSi2) coating on SiC pre-coated C/C composites was prepared by hydrothermal electrophoretic deposition. The phase composition, surface and cross-section microstructures of the prepared SiC n ?CMoSi2 coating deposited with different MoSi2/SiC n mass ratio were characterized by X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The influence of MoSi2 content in the hydrothermal electrophoretic deposition suspension on the phase composition, microstructure and high-temperature oxidation resistance of the multi-layer coatings were investigated. Results showed that the content of MoSi2 phase in the prepared coating increases with the increase of MoSi2 content in the suspension. The density and oxidation resistance of the SiCn-MoSi2 coating improve with the increase of MoSi2 mass content from 20 to 60 wt% in the deposition suspension. However, micro-cracks and micro-holes in the coating are found when deposited with 80 wt% MoSi2, and a decrease in oxidation resistance was also detected. The multi-layer coatings deposited with suspension of 60 wt% MoSi2 exhibited the best anti-oxidation ability, which can effectively protect C/C composites from oxidation in air at 1,873 K for 90 h with weight loss of 2.08%.  相似文献   

20.
The system LaPO4–SiO2–NaF–Nb2O5–Fe2O3 is characterized by immiscibility fields in the liquid state region. Addition of iron expands fields of immiscibility of melts and decreases the temperature of their coexistence. A fraction of 87–90% of niobium is extracted into iron silicate melt, and 92–98% of lanthanum is extracted into phosphate salt melt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号