首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measure the spin lattice relaxation of the planar In(1) nuclei in the CeMIn5 materials, extract quantitative information about the low energy spin dynamics of the lattice of Ce moments in both CeRhIn5 and CeCoIn5, and identify a crossover in the normal state. Above a temperature T(*) the Ce lattice exhibits "Kondo gas" behavior characterized by local fluctuations of independently screened moments; below T(*) both systems exhibit a "Kondo liquid" regime in which interactions between the local moments contribute to the spin dynamics. Both the antiferromagnetic and superconducting ground states in these systems emerge from the Kondo liquid regime. Our analysis provides strong evidence for quantum criticality in CeCoIn5.  相似文献   

2.
We investigate the quantum dynamics of repulsively bound atom pairs in an optical lattice described by the periodic Bose-Hubbard model both analytically and numerically. In the strongly repulsive limit, we analytically study the dynamical problem by the perturbation method with the hopping terms treated as a perturbation. For a finite-size system, we numerically solve the dynamic problem in the whole regime of interaction by the exact diagonalization method. Our results show that the initially prepared atom pairs are dynamically stable and the dissociation of atom pairs is greatly suppressed when the strength of the on-site interaction is much greater than the tunneling amplitude, i.e., the strongly repulsive interaction induces a self-localization phenomenon of the atom pairs.  相似文献   

3.
We derive a new approach for the stochastic transport in random systems, starting from a phenomenological master equation with random transition rates. Our method combines the effective medium approximation with age-dependent dynamics. Within the framework of our approximation, the static disorder may be described by means of a system of age-dependent master equations. For translationally invariant systems which obey certain separability conditions, the approach is equivalent with the continuous time random walk theory. Moreover, for self-avoiding random walks our effective medium approximation is exact. For non self-avoiding random walks, the approximation neglects the correlations between successive transitions leading to closed paths on the lattice.  相似文献   

4.
We present here exact analytic results for a random walk on a one-dimensional lattice with asymmetric, exponentially distributed jump probabilities. We derive the generating functions of such a walk for a perfect lattice and for a lattice with absorbing boundaries. We obtain solutions for some interesting moment properties, such as mean first passage time, drift velocity, dispersion, and branching ratio for absorption. The symmetric exponential walk is solved as a special case. The scaling of the mean first passage time with the size of the system for the exponentially distributed walk is determined by the symmetry and is independent of the range.Supported by the National Science Foundation and the Department of Energy.NSF Energy Related Postdoctoral Fellow.  相似文献   

5.
6.
We study a one-dimensional atomic lattice gas in which Rydberg atoms are excited by a laser and whose external dynamics is frozen. We identify a parameter regime in which the Hamiltonian is well approximated by a spin Hamiltonian with quasilocal many-body interactions which possesses an exact analytic ground state solution. This state is a superposition of all states of the system that are compatible with an interaction induced constraint weighted by a fugacity. We perform a detailed analysis of this state which exhibits a crossover between a paramagnetic phase with short-ranged correlations and a crystal. This study also leads us to a class of spin models with many-body interactions that permit an analytic ground state solution.  相似文献   

7.
Zai-Dong Li 《Annals of Physics》2007,322(8):1961-1971
We study the magnetic soliton dynamics of spinor Bose-Einstein condensates in an optical lattice which results in an effective Hamiltonian of anisotropic pseudospin chain. An equation of nonlinear Schrödinger type is derived and exact magnetic soliton solutions are obtained analytically by means of Hirota method. Our results show that the critical external field is needed for creating the magnetic soliton in spinor Bose-Einstein condensates. The soliton size, velocity and shape frequency can be controlled in practical experiment by adjusting the magnetic field. Moreover, the elastic collision of two solitons is investigated in detail.  相似文献   

8.
We investigate theoretically soliton excitations and dynamics of their formation in strongly correlated systems of ultracold bosonic atoms in two and three dimensional optical lattices. We derive equations of nonlinear hydrodynamics in the regime of strong interactions and incommensurate fillings, when atoms can be treated as hard core bosons. When parameters change in one direction only we obtain Korteweg–de Vries type equation away from half-filling and modified KdV equation at half-filling. We apply this general analysis to a problem of the decay of the density step. We consider stability of one dimensional solutions to transverse fluctuations. Our results are also relevant for understanding nonequilibrium dynamics of lattice spin models.  相似文献   

9.
We study the influence of repulsive interactions on an ensemble of coupled excitable rotators. We find that a moderate fraction of repulsive interactions can trigger global firing of the ensemble. The regime of global firing, however, is suppressed in sufficiently large systems if the network of repulsive interactions is fully random, due to self-averaging in its degree distribution. We thus introduce a model of partially random networks with a broad degree distribution, where self-averaging due to size growth is absent. In this case, the regime of global firing persists for large sizes. Our results extend previous work on the constructive effects of diversity in the collective dynamics of complex systems.  相似文献   

10.
We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.  相似文献   

11.
We investigate the zero-temperature phase diagram of interacting Bose gases in the presence of a simple cubic optical lattice, going beyond the regime where the mapping to the single-band Bose-Hubbard model is reliable. Our computational approach is a new hybrid quantum Monte?Carlo method which combines algorithms used to simulate homogeneous quantum fluids in continuous space with those used for discrete lattice models of strongly correlated systems. We determine the critical interaction strength and optical lattice intensity where the superfluid-to-insulator transition takes place, considering also the regime of shallow optical lattices and strong interatomic interactions. The implications of our findings for the supersolid state of matter are discussed.  相似文献   

12.
We discuss the strong-coupling regime of the nonlinear Landau-Zener problem occurring at coherent photo- and magneto-association of ultracold atoms. We apply a variational approach to an exact third-order nonlinear differential equation for the molecular state probability and construct an accurate approximation describing the time dynamics of the coupled atom-molecule system. The resultant solution improves the accuracy of the previous approximation [22]. The obtained results reveal a remarkable observation that in the strong-coupling limit, the resonance crossing is mostly governed by the nonlinearity, while the coherent atom-molecule oscillations occurring soon after crossing the resonance are principally of a linear nature. This observation is supposedly general for all nonlinear quantum systems having the same generic quadratic nonlinearity, due to the basic attributes of the resonance crossing processes in such systems. The constructed approximation turns out to have a larger applicability range than it was initially expected, covering the whole moderate-coupling regime for which the proposed solution accurately describes ail the main characteristics of the system evolution except the amplitude of the coherent atom-molecule oscillation, which is rather overestimated.  相似文献   

13.
We study the physics of cold polar molecules loaded into an optical lattice in the regime of strong three-body interactions, as put forward recently by Büchler et al. [Nature Phys. 3, 726 (2007)]. To this end, quantum Monte Carlo simulations, exact diagonalization, and a semiclassical approach are used to explore hard-core bosons on the 2D square lattice which interact solely by long-ranged three-body terms. The resulting phase diagram shows a sequence of solid and supersolid phases. Our findings are directly relevant for future experimental implementations and open a new route towards the discovery of a lattice supersolid phase in experiment.  相似文献   

14.
We consider the condensate wave function of a rapidly rotating two-component Bose gas with an equal number of particles in each component. If the interactions between like and unlike species are very similar (as occurs for two hyperfine states of (87)Rb or (23)Na) we find that the two components contain identical rectangular vortex lattices, where the unit cell has an aspect ratio of sqrt[3], and one lattice is displaced to the center of the unit cell of the other. Our results are based on an exact evaluation of the vortex lattice energy in the large angular momentum (or quantum Hall) regime.  相似文献   

15.
Abstract

We discuss stationary solutions of the discrete nonlinear Schrödinger equation (DNSE) with a potential of the ? 4 type which is generically applicable to several quantum spin, electron and classical lattice systems. We show that there may arise chaotic spatial structures in the form of incommensurate or irregular quantum states. As a first (typical) example we consider a single electron which is strongly coupled with phonons on a 1D chain of atoms — the (Rashba)–Holstein polaron model. In the adiabatic approximation this system is conventionally described by the DNSE. Another relevant example is that of superconducting states in layered superconductors described by the same DNSE. Amongst many other applications the typical example for a classical lattice is a system of coupled nonlinear oscillators. We present the exact energy spectrum of this model in the strong coupling limit and the corresponding wave function. Using this as a starting point we go on to calculate the wave function for moderate coupling and find that the energy eigenvalue of these structures of the wave function is in exquisite agreement with the exact strong coupling result. This procedure allows us to obtain (numerically) exact solutions of the DNSE directly. When applied to our typical example we find that the wave function of an electron on a deformable lattice (and other quantum or classical discrete systems) may exhibit incommensurate and irregular structures. These states are analogous to the periodic, quasiperiodic and chaotic structures found in classical chaotic dynamics.  相似文献   

16.
郑志刚  刘凤芝  高建 《中国物理》2003,12(8):846-850
In this paper, we discuss the damped unidirectional motions of a coupled lattice in a periodic potential. Each particle in the lattice is subject to a time-periodic ac force. Our studies reveal that a directed transport process can be observed when the ac forces acting on the coupled lattice have a phase shift (mismatch). This directed motion is a collaboration of the coupling, the substrate potential, and the periodic force, which are all symmetric. The absence of any one of these three factors will not give rise to a directed current. We discuss the complex relations between the directed current and parameters in the system. Results in this paper can be accomplished in experiments. Moreover,our results can be generalized to the studies of directed transport processes in more complicated spatially extended systems.  相似文献   

17.
Strongly-correlated systems in non-Hermitian models are an emergent area of research. Herein, a non-Hermitian Hubbard model is considered, where the single-particle hopping amplitudes on the lattice are not reciprocal, and provide exact analytical results of the spectral structure in the two-particle sector of Hilbert space under different boundary conditions. The analysis unveils some interesting spectral and dynamical effects of purely non-Hermitian nature and that deviate from the usual scenario found in the single-particle regime. Specifically, a spectral phase transition of the Mott-Hubbard band on the infinite lattice is predicted as the interaction energy is increased above a critical value, from an open to a closed loop in complex energy plane, and the dynamical dissociation of doublons, i.e., instability of two-particle bound states, in the bulk of the lattice, with a sudden revival of the doublon state when the two particles reach the lattice edge. Particle dissociation observed in the bulk of the lattice is a clear manifestation of non-Hermitian dynamics arising from the different lifetimes of single-particle and two-particle states, whereas the sudden revival of the doublon state at the boundaries is a striking burst edge dynamical effect peculiar to non-Hermitian systems with boundary-dependent energy spectra, here predicted for the first time for correlated particles.  相似文献   

18.
We consider the asymmetric simple exclusion processes (ASEP) on a ring constrained to produce an atypically large flux, or an extreme activity. Using quantum free fermion techniques we find the time-dependent conditional transition probabilities and the exact dynamical structure function under such conditioned dynamics. In the thermodynamic limit we obtain the explicit scaling form. This gives a direct proof that the dynamical exponent in the extreme current regime is z=1 rather than the KPZ exponent z=3/2 which characterizes the ASEP in the regime of typical currents. Some of our results extend to the activity in the partially asymmetric simple exclusion process, including the symmetric case.  相似文献   

19.
Based on the property of the discrete model entirely inheriting the symmetry of the continuous system,we present a method to construct exact solutions with continuous groups of transformations in discrete nonconservative systems.The Noether's identity of the discrete nonconservative system is obtained.The symmetric discrete Lagrangian and symmetric discrete nonconservative forces are defined for the system.Generalized quasi-extremal equations of discrete nonconservative systems are presented.Discrete conserved quantities are derived with symmetries associated with the continuous system.We have also found that the existence of the one-parameter symmetry group provides a reduction to a conserved quantity;but the existence of a two-parameter symmetry group makes it possible to obtain an exact solution for a discrete nonconservative system.Several examples are discussed to illustrate these results.  相似文献   

20.
When the two dimensional q-color Potts model in the square lattice is quenched at zero temperature with Glauber dynamics, the energy decreases in time following an Allen-Cahn power law, and the system converges to a phase with energy higher than the ground state energy after an arbitrary large time when q>4. At low but finite temperature, it cesses to obey the power-law regime and orders after a very long time, which increases with q, and before which it performs a domain growth process which tends to be slower as q increases. We briefly present and comment numerical results on the ordering at nonzero temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号