首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new rapid method for the determination of 228Ra in natural water samples has been developed at the SRNL/EBL (Savannah River National Lab/Environmental Bioassay Laboratory) that can be used for emergency response or routine samples. While gamma spectrometry can be employed with sufficient detection limits to determine 228Ra in solid samples (via 228Ac), radiochemical methods that employ gas flow proportional counting techniques typically provide lower minimal detectable activity levels for the determination of 228Ra in water samples. Most radiochemical methods for 228Ra collect and purify 228Ra and allow for 228Ac daughter ingrowth for ~36 h. In this new SRNL/EBL approach, 228Ac is collected and purified from the water sample without waiting to eliminate this delay. The sample preparation requires only about 4 h so that 228Ra assay results on water samples can be achieved in <6 h. The method uses a rapid calcium carbonate precipitation enhanced with a small amount of phosphate added to enhance chemical yields (typically >90 %), followed by rapid cation exchange removal of calcium. Lead, bismuth, uranium, thorium and protactinium isotopes are also removed by the cation exchange separation. 228Ac is eluted from the cation resin directly onto a DGA Resin cartridge attached to the bottom of the cation column to purify 228Ac. DGA Resin also removes lead and bismuth isotopes, along with Sr isotopes and 90Y. La is used to determine 228Ac chemical yield via ICP-MS, but 133Ba can also be used instead if ICP-MS assay is not available. Unlike some older methods, no lead or strontium holdback carriers or continual readjustment of sample pH is required.  相似文献   

2.
A new method for the determination of radiostrontium in seawater samples has been developed at the Savannah River National Laboratory (SRNL) that allows rapid pre-concentration and separation of strontium and yttrium isotopes in seawater samples for measurement. The new SRNL method employs a novel and effective pre-concentration step that utilizes a blend of calcium phosphate with iron hydroxide to collect both strontium and yttrium rapidly from the seawater matrix with enhanced chemical yields. The pre-concentration steps, in combination with rapid Sr Resin and DGA Resin cartridge separation options using vacuum box technology, allow seawater samples up to 10 L to be analyzed. The total 89Sr + 90Sr activity may be determined by gas flow proportional counting and recounted after ingrowth of 90Y to differentiate 89Sr from 90Sr. Gas flow proportional counting provides a lower method detection limit than liquid scintillation or Cerenkov counting and allows simultaneous counting of samples. Simultaneous counting allows for longer count times and lower method detection limits without handling very large aliquots of seawater. Seawater samples up to 6 L may be analyzed using Sr Resin for 89Sr and 90Sr with a minimum detectable activity (MDA) of 1–10 mBq/L, depending on count times. Seawater samples up to 10 L may be analyzed for 90Sr using a DGA Resin method via collection and purification of 90Y only. If 89Sr and other fission products are present, then 91Y (beta energy 1.55 MeV, 58.5 day half-life) is also likely to be present. 91Y interferes with attempts to collect 90Y directly from the seawater sample without initial purification of Sr isotopes first and 90Y ingrowth. The DGA Resin option can be used to determine 90Sr, and if 91Y is also present, an ingrowth option with using DGA Resin again to collect 90Y can be performed. An MDA for 90Sr of <1 mBq/L for an 8 h count may be obtained using 10 L seawater sample aliquots.  相似文献   

3.
Summary The measurement of radium isotopes in natural waters is important for oceanographic studies and for public health reasons. Radium-226 (T1/2 = 1620 y) is one of the most toxic of the long-lived alpha-emitters present in the environment due to its long life and its tendency to concentrate in bones, which increases the internal radiation dose of individuals. The analysis of 226Ra and 228Ra in natural waters can be tedious and time-consuming. Different sample preparation methods are often required to prepare 226Ra and 228Ra for separate analyses. A rapid method has been developed at the Savannah River Environmental Laboratory that effectively separates both 226Ra and 228Ra (via 228Ac) for assay. This method uses MnO2 Resin from Eichrom Technologies (Darien, IL, USA) to preconcentrate 226Ra and 228Ra rapidly from water samples, along with 133Ba tracer. DGA Resinò (Eichrom) and Ln-Resinò (Eichrom) are employed in tandem to prepare 226Ra for assay by alpha-spectrometry and to determine 228Ra via the measurement of 228Ac by gas proportional counting. After preconcentration, the manganese dioxide is dissolved from the resin and passed through stacked Ln-Resin-DGA Resin cartridges that remove uranium and thorium interferences and retain 228Ac on DGA Resin. The eluate that passed through this column is evaporated, redissolved in a lower acidity and passed through Ln-Resin again to further remove interferences before performing a barium sulfate microprecipitation. The 228Ac is stripped from the resin, collected using cerium fluoride microprecipitation and counted by gas proportional counting. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.  相似文献   

4.
A new rapid method for the determination of 210Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of 210Po in water samples have typically involved spontaneous auto-deposition of 210Po onto silver or other metal disks followed by counting by alpha spectrometry. The auto-deposition times range from 90 min to 24 h or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin?, often in combination with 210Pb analysis. A new rapid method for 210Po in water samples has been developed at the SRNL that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin® (N,N,N′,N′ tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of 210Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate 210Po and actinide isotopes was also developed. This new approach, rapid separation with DGA resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid determination of 210Po.  相似文献   

5.
A new rapid method for the determination of 226Ra in environmental samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for emergency response or routine sample analyses. The need for rapid analyses in the event of a Radiological Dispersive Device or Improvised Nuclear Device event is well-known. In addition, the recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid analyses for radionuclides in environmental samples in the event of a nuclear accident. 226Ra (T1/2?=?1,620?years) is one of the most toxic of the long-lived alpha-emitters present in the environment due to its long life and its tendency to concentrate in bones, which increases the internal radiation dose of individuals. The new method to determine 226Ra in environmental samples utilizes a rapid sodium hydroxide fusion method for solid samples, calcium carbonate precipitation to preconcentrate Ra, and rapid column separation steps to remove interferences. The column separation process uses cation exchange resin to remove large amounts of calcium, Sr Resin to remove barium and Ln Resin as a final purification step to remove 225Ac and potential interferences. The purified 226Ra sample test sources are prepared using barium sulfate microprecipitation in the presence of isopropanol for counting by alpha spectrometry. The method showed good chemical recoveries and effective removal of interferences. The determination of 226Ra in environmental samples can be performed in less than 16?h for vegetation, concrete, brick, soil, and air filter samples with excellent quality for emergency or routine analyses. The sample preparation work takes less than 6?h. 225Ra (T1/2?=?14.9?day) tracer is used and the 225Ra progeny 217At is used to determine chemical yield via alpha spectrometry. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory radium particles are effectively digested. The preconcentration and column separation steps can also be applied to aqueous samples with good results.  相似文献   

6.
A new rapid fusion method for the determination of plutonium in large rice samples has been developed at the Savannah River National Laboratory (Aiken, SC, USA) that can be used to determine very low levels of plutonium isotopes in rice. The recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid, reliable radiochemical analyses for radionuclides in environmental and food samples. Public concern regarding foods, particularly foods such as rice in Japan, highlights the need for analytical techniques that will allow very large sample aliquots of rice to be used for analysis so that very low levels of plutonium isotopes may be detected. The new method to determine plutonium isotopes in large rice samples utilizes a furnace ashing step, a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with TEVA Resin? cartridges. The method can be applied to rice sample aliquots as large as 5 kg. Plutonium isotopes can be determined using alpha spectrometry or inductively-coupled plasma mass spectrometry (ICP-MS). The method showed high chemical recoveries and effective removal of interferences. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory plutonium particles are effectively digested. The MDA for a 5 kg rice sample using alpha spectrometry is 7 × 10?5 mBq g?1. The method can easily be adapted for use by ICP-MS to allow detection of plutonium isotopic ratios.  相似文献   

7.
The uranium isotopic abundance and the 238U–226Ra secular equilibrium were determined in nine Hungarian coal slag samples. The 226Ra activity concentration was measured based on the radon decay products and also the 226Ra peak at 186 keV. Secular equilibrium existed in eight samples, whereas one sample showed a slight disequilibrium. The direct and fast measurement using only the 186 keV peak was validated which can be used after measuring the uranium isotopic ratio and verifying the 238U–226Ra secular equilibrium. This method can be used to measure the 226Ra content of high number of samples from the same geochemical background.  相似文献   

8.
A new rapid method for the determination of actinides and radiostrontium in vegetation samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. The actinides in vegetation method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The purified 90Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. The actinide and 90Sr in vegetation sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles or vegetation residue after furnace heating is effectively digested.  相似文献   

9.
A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used to separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.  相似文献   

10.
A method using DGA resin (N,N,N′,N′-tetra-n-octyldiglycolamide on an inert support) was developed for the rapid analysis of actinides in urine samples. Samples acidified with HCl to 4 M were loaded directly (without digestion) onto a DGA column. Actinides were stripped simultaneously, α-sources were prepared by co-precipitation with NdF3. Americium, plutonium and uranium were separated with acceptable high recoveries (40–80%). The americium, plutonium and uranium content of 100–200 ml urine samples was determined within 24 h with detection limits as low as 0.01 Bq l?1. Based on model experiments using 14C-spiked urea, it was proven that high urea content can affect americium separation deleteriously due to irreversible fixing of americium on DGA resin.  相似文献   

11.
An improved and novel sample preparation method for 226Ra determination in liquid samples by isotope dilution inductively coupled plasma sector field mass spectrometry using laboratory-prepared 228Ra tracer has been developed. The procedure involves a selective preconcentration achieved by applying laboratory-prepared MnO2 resin followed by cation exchange chromatographic separation. In order to completely eliminate possible molecular interferences, medium mass resolution (R = 4,000) combined with chemical separation was found to be a good compromise that enhanced the reliability of the method. The detection limit of 0.084 fg g−1 (3.1 mBq kg−1) achieved is comparable to that of the emanation method or alpha spectrometry and is suitable for low-level environmental measurements. The chemical recovery of the sample preparation method ranged from 72 to 94%. The proposed method enables a rapid, accurate and less labor-intensive approach to routine environmental 226Ra determination than the radioanalytical techniques conventionally applied.  相似文献   

12.
Bare (unmodified) and crown ether (CE)-modified Fe3O4 magnetic nanoparticles (MNPs) were investigated for the rapid extraction of 226Ra from water samples. It involved synthesizing the MNPs, introducing them into the sample solutions, ultrasonicating and agitating the suspension, magnetically separating the nanoparticles from solution, and measuring the 226Ra content in the supernatant. Experimental parameters such as salt choice, salt concentration and pH were optimized to achieve maximum extraction of 226Ra onto the MNPs. 226Ra content was determined using a Hidex 300SL liquid scintillation counter with α/β separation capability, or a gamma spectrometric detection system. The bare Fe3O4 nanoparticles showed significant pH dependence for the extraction of 226Ra from an aqueous solution over a pH range of 2–10. They gave an extraction of 95 ± 1 and 98 ± 1 % at pH 9 in 0.1 M NaCl and 0.1 M NaClO4, respectively, whereas an extraction of 8–24 % was obtained, over the pH ranges from 2 to 5. The CE-modified MNPs yielded extraction efficiencies as high as 99 ± 1 % in the presence of 0.01 M picric acid at pH 4. This study demonstrates that the surface functionalization of Fe3O4 MNPs with suitable ligand modification can offer a selective mode of extraction for 226Ra in the presence of its daughter progenies.  相似文献   

13.
A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis. If a radiological dispersive device, improvised nuclear device or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean-up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.  相似文献   

14.
Three protocols (Method I: ion chromatography (IC) and extraction chromatography (EC), Method II: precipitation followed by IC, and Method III: adsorption onto MnO2 followed by IC-EC) were investigated to determine their applicability for the separation and pre-concentration of 226Ra in sediments. 226Ra recoveries, measured using the isotope dilution method with 228Ra as yield tracer, and the removal of spectral and non-spectral interferences were evaluated. The formation of polyatomic interferences at m/z = 226 from elements found in the matrix of sediments was also investigated to assess the level of separation required. Methods I and III were found to be the most effective with respect to recoveries and interference removal. The efficiency of a rapid microwave based protocol for the complete digestion of 1 g of sediment is also described. The method was tested and 226Ra concentrations in the millibecquerel range (fg) were determined in a standard reference material and sediment cores collected from Lake Baikal.  相似文献   

15.
A brief study on dissolved radionuclides in aquatic environment, especially in ground water, constitutes the key aspect for assessment and control of natural exposure. In the present study the distribution of natural uranium and 226Ra concentration were measured in ground water samples collected within a 10 km radius around the Narwapahar uranium mine in the Singhbhum thrust belt of Jharkhand, India in 2007–2008. The natural uranium content in the ground water samples in this region was found to vary from 0.1 to 3.75 μg L?1 with an average of 0.87 ± 0.73 μg L?1 and 226Ra concentration was found to vary from 5.2 to 38.1 mBq L?1 with an average of 13.73 ± 7.34 mBq L?1. The mean annual ingestion dose due to intake of natural uranium and 226Ra through drinking water pathway to male and female adults population was estimated to be 6.55 and 4.78 μSv y?1, respectively, which constitutes merely a small fraction of the reference dose level of 100 μSv y?1 as recommended by WHO.  相似文献   

16.
An investigation on the distribution of 226Ra and 228Ra activity concentration in coastal surface sea water from Okha in Gujarat to Ratnagiri in Maharashtra state along the west coast of India was carried out. In-situ pre-concentration technique was used to measure radium isotopes by passing 1,000 L of seawater through MnO2 impregnated polypropylene filter cartridges at all the locations. 226Ra was estimated using gamma ray peak of its daughter radionuclides 214Bi and 214Pb. 228Ra was estimated from its daughter 228Ac. In the coastal waters, 226Ra and 228Ra activity concentration were observed to be in the range of 1.5–2.9 and 2.5–8.6 Bq m?3 with a mean of 2.2 and 4.9 Bq m?3 respectively. The activity of 228Ra was observed to be more than 226Ra in all the locations. The variation in spatial distribution of the radium isotopes activity concentration and its ratio with respect to location is discussed in the paper. The radioactive database obtained represents reference values for coastal environment of India.  相似文献   

17.
Activity concentrations of 238U, 232Th, 226Ra, 40K and 137Cs were measured in milk, egg, fruit and fish samples collected around a proposed site for setting up nuclear facilities, near Vishakhapatanam. The activity concentrations of the radionuclides ranged from 0.002 to 10.6, 0.002 to 2.8, 0.1 to 7.2, 3 to 110.8, 0.03 to 3 mBq g?1 for 238U, 232Th, 226Ra, 40K and 137Cs considering analysed food matrices. Natural uranium was measured in drinking water samples and the values were below 15 ppb. The average ingestion dose was 2.07 ± 2.01, 2.81 ± 4.38, 7.66 ± 8.24, 1.28 ± 0.84 and 0.04 ± 0.05 μSv year?1 for 238U, 232Th, 226Ra, 40K and 137Cs in milk, egg, fruit, fish and water. The ingestion dose received was the highest for milk, due to its high ingestion rate. It was observed that 226Ra is the largest contributor of measured radionuclides in this study for the different food matrices analysed due to its high dose conversion factor. The study was carried out as a part of baseline data generation for this region with which future changes in the radiological scenario can be compared.  相似文献   

18.
The activity concentration and total annual effective dose of the terrestrial naturally occurring radionuclides (232Th, 226Ra and 40K) were measured in soil and rock samples collected from various locations of Hemavathi river basin in Karnataka, using HPGe detector. The results revealed that activity concentration of radionuclides 226Ra, 232Th and 40K in the soil had geometrical mean values of 16.7 ± 0.6, 33.9 ± 1.2 and 359.9 ± 9.2 Bq kg?1, respectively. In rock samples activity concentrations of 226Ra, 232Th and 40K had geometrical mean values of 20.2 ± 0.7, 18.0 ± 0.9 and 276 ± 9.6 Bq kg?1, respectively. The external Hazard index and indoor hazard index were found to be within safety limits prescribed by European commission 1999 report.  相似文献   

19.
Phosphate deposits are generally characterized by high levels of natural radionuclide concentrations. Natural radionuclides from the uranium and thorium series were measured, using high-resolution gamma-spectrometry in phosphate rock and phosphogypsum samples from the phosphate fertilizer industry in India. Equilibrium was found to be disrupted during the chemical processing of phosphate rock with 83 % of the 226Ra and only 5 % of 238U fractionating to phosphogypsum. Activity concentrations of 238U and 226Ra in phosphogypsum produced from various fertilizer industries of India showed levels < 1,000 Bq kg?1 and pose no restriction for use in building/construction material.  相似文献   

20.
Direct determination of 226Ra in complex environmental matrices (biological and uranium ore samples) by collision-cell inductively coupled plasma mass-spectrometry was investigated. Possible polyatomic interferences were studied and their effects on 226Ra measurements were determined. The instrumental conditions for optimal signal-to-noise ratio for 226Ra were found. Concentrations of 226Ra in certified reference samples were measured using both external calibration and standard addition approaches. The best precision was obtained by applying standard additions. The absolute detection limit for 226Ra was 1 fg with optimal gas flow rates for the collision cell of 7 ml.min-1 for helium and 4 ml.min-1 for hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号