首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vibrational properties of the (high-spin)-(high-spin) and the (high-spin)- (low-spin) states of the dinuclear Fe(II) spin crossover complex[{Fe(L-N4Me2)}2(BiBzIm)](ClO4)2·2EtCN1 have been studied by means of nuclear inelastic scattering. At a temperature of 80 K typical low spin marker bands are detected in the region around 400 cm?1, these bands almost completely disappear after increasing temperature to 190 K. Corresponding density functional theory calculations using the functional B3LYP* and the basis set CEP-31G reproduce the experimental data and thus allow a deeper understanding of the vibrational properties of dinuclear Fe(II) spin crossover complexes.  相似文献   

2.
The incomplete spin transition between the low-spin (LS) (S=1/2) and the intermediate-spin (IS) (S=3/2) states in the iron (III) complex Fe(J-mph)NO (mph=4-methyl-o-phenylene), centered atT c≈212 K, has been studied with57Fe Mössbauer spectroscopy and magnetic susceptibility measurements between 80 K and 320 K. The lineshape of the Mössbauer spectra is well reproduced by a two state stochastic relaxation model resulting in values of about 2·106 s?1 to 7·106 s?1 for the IS→LS transition rate constantk IL. The kinetics of this spin transition can be described by an Arrhenius equation yielding activation energiesE IL=1.1 (2) kJ/mol andE LI=6.1 (2) kJ/mol for the IS→LS and LS→IS conversion, respectively.  相似文献   

3.
A model for high-spin/low-spin transitions in solids is discussed including the effect of low symmetry ligand fields and spin-orbit coupling. These interactions are required in the calculation of quadrupole splitting and magnetic susceptibility. In addition, the contribution from lattice vibrations is taken into account within the approximation of the Debye model. The recently observed entropy change at the transition temperature may be easily explained on this basis. The model is applied in a detailed numerical fit of the experimental data of [Fe(4,7-(CH3)2-phen)2(NCS)2] where phen = 1,10-phenanthroline. The compound may be characterized by the parameter values Δ1, = Δ2 = 400 cm?, λ = ?80 cm?1, J = 196 cm?1 (or Jtot = 205 cm?1) and N = 10 experimentally based Debye temperatures Θ1 = 140 K and Θh = 130 K have been employed.  相似文献   

4.
The results of the nuclear inelastic scattering (NIS)/nuclear resonance vibrational spectroscopy (NRVS) for the powder spectra of dimeric [Fe 2L5(NCS) 4] (L = N-salicylidene-4-amino-1,2,4-triazole) complex are presented. This system is spin crossover (SCO) material tagged with a fluorophore that can sense or “feel” the SCO signal ripping through the molecular network and thereby providing an opportunity to register the SCO transition. The spectra have been measured for the low-spin and high-spin phases of the complex. The high-spin isomer reveals one broad band above 200 cm ?1, while the low-spin one displays two intense bands in the range from 390 to 430 cm ?1, accompanied by a number of weaker bands below this area and one at ca. 490 cm ?1. A normal coordinate analysis based on density functional calculations yields the assignment of the spin marker bands to particular molecular modes. In addition the vibrational contribution to the spin transition has been estimated  相似文献   

5.
A series of mixed iron[II] phenanthroline complexes having analogous coordination spheres but containing the central iron atom in differing spin states (high-spin, 5T2; low-spin, 1A1; and spin triplet, 3A2) have been investigated by XPS. The data reflect the effects of the spin state of iron on the XPS pattern and on the electron binding energies. Fe[4,7-(C2H5OOC)2phen] 2(NCS)2 is the first iron[II] complex in the 3A2 spin state that has been studied by XPS.  相似文献   

6.
Co2+ binding to the nicotinamide adenine dinucleotide (NAD+) molecule in water solution was studied by electron paramagnetic resonance (EPR) and electron spin echo at low temperatures. Cobalt is coordinated by NAD+ when the metal is in excess only, but even in such conditions, the Co/NAD+ complexes coexist with Co(H2O)6 complexes. EPR spin-Hamiltonian parameters of the Co/NAD+ complex at 6 K are g z  = 2.01, g x  = 2.38, g y  = 3.06, A z  = 94 × 10?4 cm?1, A x  = 33 × 10?4 cm?1 and A y  = 71 × 10?4 cm?1. They indicate the low-spin Co2+ configuration with S = 1/2. Electron spin echo envelope modulation spectroscopy with Fourier transform of the modulated spin echo decay shows a strong coordination by nitrogen atoms and excludes the coordination by phosphate and/or amide groups. Thus, Co2+ ion is coordinated in pseudo-tetrahedral geometry by four nitrogen atoms of adenine rings of two NAD+ molecules.  相似文献   

7.
High-frequency and -field electron paramagnetic resonance (HFEPR) has been used to study several complexes of high-spin manganese(III) (3d4,S = 2): [Mn(Me2dbm)X] and [Mn(OEP)X] (X = Cl?, Br?), where Me2dbm? is the anion of 4,4′-dimethyldibenzoylmethane and OEP2? is the dianion of 2,3,7,8,12,13,17,18-octaethylporphine. These non-Kramers (integer spin) systems are not EPR-active with conventional magnetic fields and microwave frequencies. However, use of fields up to 15 T in combination with multiple frequencies in the range of 95–550 GHz allows observation of richly detailed EPR spectra. Analysis of the field- and frequency-dependent HFEPR data allows accurate determination of the following spin Hamiltonian parameters for these complexes: [Mn(Me2dbm)Cl],D = ?2.45(3) cm?1; [Mn(Me2dbm)Br],D = ?1.40(2) cm?1; [Mn(OEP)Cl],D = ?2.40(1) cm?1; [Mn(OEP)Br],D = ?1.07(1) cm?1 (E ≈ 0, andg ≈ 2.0 in all cases). Comparison of structural data with the electronic parameters for these and related complexes shows quantitatively the effects of axial and equatorial ligation on the electronic structure of Mn(III). These high-spin complexes can be employed as building blocks in the construction of single-molecule magnets. Thus the accurate determination and understanding of the electronic properties, best obtainable by HFEPR, of these monomeric units is important in understanding and improving the properties of the polynuclear single-molecule magnets which can be formed from them.  相似文献   

8.
Single-crystal W-band (95 GHz) electron paramagnetic resonance (EPR) studies have been performed at 20 K and at room temperature on a tetragonal Mn(III) compound with potential application as a building block for high-spin clusters. The observed EPR spectra correspond to an anisotropic high-spinS = 2 ground state and have been attributed to equivalent centers related by four-fold symmetry. Accurate values for the spin Hamiltonian parameters were obtained from the analysis of the data at both temperatures. At 20 K the contribution of fourth-order zero-field splitting terms was shown to be significant, with parameter values B 4 0 = 0.0009(3) cm?1, B 4 2 = 0.0006(2) cm?1 and B 4 4 = 0.0017(3) cm?1, to be considered together with the second-order parametersD = ?1.1677(7) cm?1 andE= ?0.0135(6) cm?1.  相似文献   

9.
The bending vibration-rotation band ν4 of DCCF was studied. The measurements were carried out with a Fourier spectrometer at a resolution of about 0.03 cm?1. The constants B0=0.29141(1)cm?1, α4=?5.02(2)×10?4cm?1, q4=4.52(3)×10?4cm?1, and D0=9.2(4)×10?8cm?1 were derived. The rotational analysis of the “hot” bands 2ν4(Δ) ← ν4(II) and 2ν4+) ← ν4(II) was performed. In addition, the “hot” bands ν4 + ν5 ← ν5 were assigned. A set of vibrational constants involved was derived.  相似文献   

10.
The first high-resolution absorption spectrum of the 5ν3 band of the 14N16O2 molecule at 7766.071 cm?1 was recorded by high sensitivity CW-Cavity Ring Down Spectroscopy between 7674 and 7795 cm?1. The noise equivalent absorption of the recordings was αmin≈1×10?10 cm?1. The assignments involve energy levels of the (0,0,5) vibrational state with rotational quantum numbers up to Ka=9 and N=47. The set of the spin–rotation energy levels were reproduced within their experimental uncertainty using a theoretical model, which takes explicitly into account the Coriolis interactions between the spin rotational levels of the (0,0,5) vibrational state and those of the (0,2,4) dark state together with the electron spin–rotation resonances within the (0,0,5) and (0,2,4) states. Precise values were determined for the (0,0,5) vibrational energy rotational, spin-rotational constants and for the (0,2,4)?(0,0,5) coupling constants. In addition the (0,2,4) rotational and spin-rotational constants were estimated. Using these parameters and the value of the transition dipole moment operator determined from a fit of a selection of experimental line intensities, the synthetic spectrum of the 5ν3 band was generated and is provided as Supplementary material.  相似文献   

11.
While magnetic properties of the 1D chain [Fe(hyetrz)3](4-bromophenylsulfonate)2 investigated over the temperature range from 300 K to 2 K show paramagnetic behavior, detailed 57Fe Mössbauer and muon spin relaxation measurements reveal an unexpected spin conversion. Approximately ~14 % of the high-spin ions are found to convert to the low-spin state with a transition temperature T 1/2?~?120 K.  相似文献   

12.
The results of electron paramagnetic resonance (EPR) studies of Dy3+ ions in lead thiogallate PbGa2S4 single crystals have been presented. It has been shown that the ground state of these ions corresponds to the lowest Stark sublevel Γ6 of the term 6 H 15/2. The spectra are well described by the axially symmetric spin Hamiltonian with the effective spin S = 1/2 with the factors g = 15.06 and g = 2.47. The Dy3+ ions substitute Pb2+ ions in the crystal lattice of PbGa2S4. The observed hyperfine structure has allowed to unambiguously interpret the EPR spectra. The hyperfine interaction constants of two odd isotopes of dysprosium in lead thiogallate single crystals have been found to be A = 675 × 10?4 cm?1 and A = 111 × 10?4 cm?1 for 163Dy and A = 472 × 10?4 cm?1 and A = 77 × 10?4 cm?1 for 161Dy.  相似文献   

13.
[Fe(II)(H-trz)3]@Nafion (trz = triazole) is a transparent spin crossover complex film, where the spin crossover transition between the low-spin (S = 0) and the high-spin (S = 2) states takes place between 225?K and 300?K. In this film, two doublets corresponding to the low-spin and high-spin states were observed in the 57Fe M?ssbauer spectra, reflecting the spin crossover transition. From the analysis of 57Fe M?ssbauer spectra, the Debye temperatures of the low-spin and high-spin sites were estimated at 185?K and 176?K, respectively, in the temperature range between 10?K and 150?K. In this film, the total intensity of the M?ssbauer spectra corresponding to the low-spin and high-spin sites drastically decreases above 200?K, reflecting the glass transition of Nafion, where the lattice vibration of [Fe(H-trz)3] $_{\rm n}^{\,\,\rm 2n+}$ is softened just as in solution due to micro-Brown motion of the segment of Nafion polymer membrane.  相似文献   

14.
In Cu2O a new absorption line is observed at 97 cm?1 below the n =1 of the yellow exciton (triply degenerate orthoexciton) under a strong magnetic field at 4.2 K. The line is assigned as a transition to a nondegenerate spin triplet state Γ+2 (paraexciton). An analysis including the effects due to the n =1 of the green exciton yields 364 cm?1 as the exchange energy, and 2.68 and ?1.02, or 1.02 and ?2.68 as the g-factors of the conduction and valence bands forming the yellow exciton.  相似文献   

15.
Near infrared absorption measurements by Gross and Bron led to the suggestion that the threefold degeneracy of the localized vibration ofH i ? andD i ? centres in KI is completely lifted in KBr. Using thermal annealing procedures,H i ? -D i ? substitution and far infrared techniques we found that the lines at 794, 840, and 896 cm?1 cannot be interpreted as a splitting of the main line. Only the 794 cm?1 line can be correlated with the direct excitation of theH i ? oscillator. The absence of any splitting in this line (its halfwidth at 9 °K is only 1.5 cm?1) indicates that also in KBrH i ? centres have at most only slightly perturbedT d symmetry.  相似文献   

16.
Changes in the spin state of Co3+ ions in LaCoO3 and GdCoO3 compounds are studied through the use of the temperature dependence of the magnetic susceptibility and the modified crystal field theory. It is shown that the spin subsystem of Co3+ ions in LaCoO3 and GdCoO3 undergoes the spin-crossover type transition between the high-spin (S = 2) and low-spin (S = 0) states without any contribution of the intermediate-spin state (S = 1).  相似文献   

17.
The far-infrared rotational spectra of chlorotrifluoromethane, dichlorodifluoromethane, and trichlorofluoromethane have been observed with an interferometric (Fourier transform) spectrometer in the region 10–40 cm?1 at a resolution of 0.07 cm?1. CCl2F2 exhibits a continuum spectrum at this resolution, but symmetric top rotational fine structure is observed for CClF3 and CCl3F. Isotope splitting is also observed in CClF3, and analysis yields the rotational constants for C35ClF3 of B0 = 0.11112 cm?1, DJ = 1.6 × 10?8cm?1; and for C37ClF3, B0 = 0.10835 cm?1, DJ = 1.5 · 10?8cm?1. Isotopic shifts can be allowed for in CCl3F to yield constants for C35Cl3F of B0 = 0.0821 cm?1, DJ = 1 × 10?8cm?1. These values are all in agreement with those deduced from microwave studies of the low J transitions apart from B0 for C35ClF3, where the difference is outside the expected experimental error.  相似文献   

18.
Attempts were made to grow CeO2 and ThO2 single crystals doped with transition metal ions. Only Fe3+ and Mn2+ could be detected by the EPR technique. The EPR spectrum of Fe3+ in CeO2 exhibits the well-known fine structure in cubic fields. The parameters areg=2.0044(1) anda=15.6(1)·10?4 cm?1. The hyperfine constantA for57Fe in hexahedral coordination was found to be 8.9(1)·10?4 cm?1. The EPR spectrum of Mn2+ in CeO2 reveals two cubic Mn2+ centers. The parameters for center 1 areg=1.9999(1) andA=86.9(1)·10?4 cm?1 and for center 2g=1.9984(1) andA=87.0(1)·10?4 cm?1. Heating the Mn doped CeO2 samples in hydrogen, the Mn2+ centers transform from cubic into trigonal centers with approximate values ofg=1.9988(2),A=84.5(6)·10?4 cm?1 andD=203(1)·10?4 cm?1. The two observed Mn2+ centers in ThO2 exhibita priori axial symmetry with approximate values ofg=2.0006(2),A=88.9(4)·10?4 cm?1 andD=33(3)·10?4 cm?1.  相似文献   

19.
The interactions of the aluminum acceptor impurity in silicon are investigated using polarized negative muons. The polarization of negative muons is studied as a function of temperature on crystalline silicon samples with phosphorus (1.6×1013 cm?3) and boron (4.1×1018 cm?3) impurities. The measurements are performed in a magnetic field of 4.1 kG perpendicular to the muon spin, in the temperature range from 4 to 300 K. The experimental results show that, in phosphorus-doped n-type silicon, an μAl acceptor center is ionized in the temperature range T>50 K. For boron-doped silicon, the temperature dependence of the shift of the muon spin precession frequency is found to deviate from the 1/T Curie law in the temperature range T ? 50 K. The interactions of a μAl acceptor that may be responsible for the effects observed in the experiment are analyzed.  相似文献   

20.
Electron spin resonance has been observed for Fe3+ and Mn2+ ions occupying sites with trigonal symmetry in undoped and doped Verneuil-grown crystals of the ilmenite type compound MgTiO3. At 300 K, the fine structure parameters in the spin Hamiltonian are (in 10?4cm?1) D = +844 (± 1), (a? F) = +118 (± 1), a = 69 (± 7) for Fe3+ and D = +164 (± 1), (a ? F) = +10.2 (± l), a = 7.0 (± 1) for Mn2+. These values are compared with literature data for Fe3+ and Mn2+ in other oxides, especially Al2o3, with particular reference to the recent “superposition” theory of the effect of a trigonal distortion. From the orientation of the axes of cubic pseudosymmetry of the spin Hamiltonian, and with the assumption that a has the same sign for both ions, it is proposed that Fe3+ and Mn2+ occupy the same octahedral site, namely the Mg2+ site. Anomalous line splittings observed for one sample were attributed to twinning on (0001) or {1120} planes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号