首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zero‐field splitting (ZFS) tensors ( D tensors) of organic high‐spin oligonitrenes/oligocarbenes up to spin‐septet are quantitatively determined on the basis of quantum chemical calculations. The spin–orbit contributions, D SO tensors are calculated in terms of a hybrid CASSCF/MRMP2 approach, which was recently proposed by us. The spin–spin counterparts, D SS tensors are computed based on McWeeny–Mizuno’s equation in conjunction with the RODFT spin densities. The present calculations show that more than 10 % of ZFS arises from spin–orbit interactions in the high‐spin nitrenes under study. Contributions of spin‐bearing site–site interactions are estimated with the aid of a semi‐empirical model for the D tensors and found to be ca. 5 % of the D SO tensor. The analysis of intermediate states reveal that the largest contributions to the calculated D SO tensors are attributed to intra‐site spin flip excitations and delocalized π and π* orbitals play an important role in the inter‐site spin–orbit interactions.  相似文献   

2.
The energy transfer pathways in lanthanide antenna probes cannot be comprehensively rationalized by the currently available models, and their elucidation remains to be a challenging task. On the basis of quantum-chemical ab initio calculations of representative europium antenna complexes, an innovative energy resonance model is proposed, which is controlled by an overall nonet–quintet intersystem crossing on the basis of spin–orbit coupling among the sublevels of the involved states.  相似文献   

3.
The influence of spin—orbit and vibronic interactions upon the chiroptical properties of nearly degenerate dd transitions in metal complexes of pseudo-tetragonal symmetry is investigated. A model system is considered in which three nearly degenerate dd excited states are coupled via both spinorbit and vibronic interactions. Vibronic interactions among the three nearly degenerate dd electronic states are assumed to arise from a pseudo-Jahn—Teller (PJT) mechanism involving three different vibrational modes (each nontotally symmetric in the point group of the undistorted model system).A vibronic hamiltonian is constructed (for the excited states of the model system) which includes linear coupling terms in each of the three PJT-active vibrational modes as well as a linear coupling term in one totally symmetric mode of the system and a spin—orbit interaction term. Wavefunctions and eigenvalues for the spin—orbit/vibronic perturbed excited states. of the model system are obtained by diagonalizing this hamiltonian in a basis constructed of uncoupled vibrational and electronic (orbital and spin) wavefunctions.Rotatory strengths associated with transitions to vibronic levels of the perturbed system are calculated and “rotatory strength spectra” are computed assuming gaussian shaped vibronic spectral components. Calculations are carried out for a number of vibronic and spin—orbit coupling parameters and for various splitting energies between the interacting electronic states. The calculated results suggest that chiroptical spectra associated with transitions to a set of nearly degenerate dd excited states of a chiral transition metal complex cannot be interpreted directly without some consideration of the effects introduced by spin—orbit and vibronic perturbations. These perturbations can lead to substantial alterations in the sign patterns and intensity distributions of rotatory strength among vibronic levels derived from the interacting electronic states and it is generally not valid to assign specific features in the observed circular dichroism spectra to transitions between states with well-defined electronic (orbital and spin) identities.Our theoretical model is conservative with respect to the total (or net) rotatory strength associated with transitions to levels derived from the three interacting electronic states; the vibronic and spin—orbit coupling operators are operative only within this set of states. That is, the total (or net) rotatory strength associated with these transitions remains invariant to the vibronic and spin—orbit coupling parameters of the model.  相似文献   

4.
The Kramers' restricted Hartree–Fock (KRHF) and second-order Møller–Plesset perturbation (KRMP2) methods using relativistic effective core potentials (RECP) with spin–orbit operators and two-component spinors are extended to the unrestricted forms, KUHF and KUMP2. As in the conventional unrestricted methods, the KUHF and KUMP2 methods are capable of qualitatively describing the bond breaking for a single bond. As a result, it is possible to estimate spin–orbit effects along the dissociation curve at the HF and MP2 levels of theory as is demonstrated by the test calculations on the ground states of HI and CH3I. Since the energy lowering due to spin–orbit interactions is larger for the I atom than for the closed-shell molecules, dissociation energies are reduced and bond lengths are slightly elongated by the inclusion of the spin–orbit interactions. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 91–98, 1998  相似文献   

5.
We report a methodology that allows the investigation of the consequences of the spin–orbit coupling by means of the QTAIM and ELF topological analyses performed on top of relativistic and multiconfigurational wave functions. In practice, it relies on the “state-specific” natural orbitals (NOs; expressed in a Cartesian Gaussian-type orbital basis) and their occupation numbers (ONs) for the quantum state of interest, arising from a spin–orbit configuration interaction calculation. The ground states of astatine diatomic molecules (AtX with X = At F) and trihalide anions (IAtI , BrAtBr , and IAtBr ) are studied, at exact two-component relativistic coupled cluster geometries, revealing unusual topological properties as well as a significant role of the spin–orbit coupling on these. In essence, the presented methodology can also be applied to the ground and/or excited states of any compound, with controlled validity up to including elements with active 5d, 6p, and/or 5f shells, and potential limitations starting with active 6d, 7p, and/or 6f shells bearing strong spin–orbit couplings.  相似文献   

6.
We have investigated the effects of spin–orbit (SO) interactions on noncollinear molecular magnetism by combining the classical Dzyaloshinsky–Moriya (DM) model and ab initio generalized spin orbital (GSO) method. We have derived an estimation scheme of the magnetic anisotropy energy (MAE) and the Dzyaloshinsky vector based on the SO first‐order perturbation theory (SOPT1) for GSO Hartree–Fock (GHF) solutions. We found that the fundamental results of GHF‐SOPT1 method can be reproduced by diagonalizing the core Hamiltonian plus SO terms, and that the spin topologies of odd‐ring systems can be determined by the topological indices of the singly occupied molecular orbitals. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

7.
Ab initio molecular dynamics approach has been extended to multi-state dynamics on the basis of the spin–orbit coupled electronic states that are obtained through diagonalization of the spin–orbit coupling matrix with the multi-state second-order multireference perturbation theory energies in diagonal elements and the spin–orbit coupling terms at the state-averaged complete active space self-consistent field level in off-diagonal elements. Nonadiabatic transitions over the spin–orbit coupled states were taken into account explicitly by a surface hopping scheme with utilizing the nonadiabatic coupling terms calculated by numerical differentiation of the spin–orbit coupled wavefunctions and analytical nonadiabatic coupling terms. The present method was applied to the A-band photodissociation of methyl iodide, CH3I + hv → CH3 + I (2P3/2)/I* (2P1/2), for which a pioneering theoretical work was reported by Amatatsu, Yabushita, and Morokuma. The present results reproduced well the experimental branching ratio and energy distributions in the dissociative products. © 2018 Wiley Periodicals, Inc.  相似文献   

8.
Spin–orbit coupling (SOC) is an essential factor in photophysics of heavy transition metal complexes. By enabling efficient population of the lowest triplet state and its strong emission, it gives rise to a very interesting photophysical behavior and underlies photonic applications such as organic light emitting diodes (OLED) or luminescent imaging agents. SOC affects excited-state characters, relaxation dynamics, radiative and nonradiative decay pathways, as well as lifetimes and reactivity. We present a new photophysical model based on mixed-spin states, illustrated by relativistic spin–orbit TDDFT and MS-CASPT2 calculations of [Re(imidazole)(CO)3(1,10-phenanthroline)]+. An excited-state scheme is constructed from spin–orbit (SO) states characterized by their energies, double-group symmetries, parentages in terms of contributing spin-free singlets and triplets, and oscillator strengths of corresponding transitions from the ground state. Some of the predictions of the relativistic SO model on the number and nature of the optically populated and intermediate excited states are qualitatively different from the spin-free model. The relativistic excited-state model accounts well for electronic absorption and emission spectra of ReI carbonyl diimines, as well as their complex photophysical behavior. Then, we discuss the SO aspects of photophysics of heavy metal complexes from a broader perspective. Qualitative SO models as well as previous relativistic excited-state calculations are briefly reviewed together with experimental manifestations of SOC in polypyridine and cyclometallated complexes of second- and third row d6 metals. It is shown that the relativistic SO model can provide a comprehensive and unifying photophysical picture.  相似文献   

9.
Phenothiazinium dyes are used as photosensitizers in photodynamic therapy. Their mode of action is related to the generation of triplet excited states by intersystem crossing. Therefore, rationalizing the factors that influence intersystem crossing is crucial to improve the efficacy of photodynamic therapy. Here we employ quantum mechanics/molecular mechanics calculations to investigate the effect of aqueous and nucleic acid environments on the intersystem crossing mechanism in methylene blue. We find that the mechanism by which the triplet states are generated depends strongly on the environment. While intersystem crossing in water is mediated exclusively by vibronic spin–orbit coupling, it is enhanced in DNA due to a second pathway driven by electronic spin–orbit coupling. Competing charge‐transfer processes, which are also possible in the presence of DNA, can therefore be suppressed by a suitable structural functionalization, thereby increasing the efficacy of photodynamic therapy.  相似文献   

10.
Cover Image     
Spin-inversion dynamics in O2 binding to a model heme complex, which consisted of Fe(II)-porphyrin and imidazole, were studied using nonadiabatic wave packet dynamics calculations. We considered three active nuclear degrees of freedom in the dynamics, including the motions along the Fe–O distance, Fe–O–O angle, and Fe out-of-plane distance. Spin-free potential energy surfaces for the singlet, triplet, quintet, and septet states were developed using density functional theory calculations, and spin–orbit coupling elements were obtained from CASSCF-level electronic structure calculations. The spin-inversion mainly occurred between the singlet state and one of the triplet states due to large spin–orbit couplings and the contributions of other states were extremely small. The present quantum dynamics calculations suggested that the narrow crossing region model plays a dominant role in the O2 binding dynamics. In addition, the one-dimensional Landau–Zener model underestimated the nonadiabatic transition probability.  相似文献   

11.
We have derived a simple analytical expression which completely characterizes entanglement properties of the spin state of a photo-Auger electron pair. These two electrons are sequentially emitted from a rotating linear molecule in the absence of any spin-dependent interactions. This expression comes out to be identical to that already obtained [Chandra and Ghosh, Phys. Rev. A 70 (2004) 060306(R)] for similar studies in atomic targets without spin–orbit interaction. Thus, inner-shell ionization of both atoms and of linear molecules becomes a readily available universal factory for producing bipartite entangled states of electrons.  相似文献   

12.
Spin‐dependent effects in complex formation reactions of the ethylene molecule with palladium and platinum atoms were studied by electron correlation calculations with account of spin–orbit coupling. Simple correlation diagrams illustrating spin‐uncoupling mechanisms were obtained, showing that the low spin state of the transition‐metal atom or the transition‐metal atom complex is always more reactive than are the high spin states because of the involvement of the triplet excited molecule in the chemical activation. Spin–orbit coupling calculations of the reaction between a platinum atom and ethylene explain the high‐spin Pt(3D) reactivity as due to an effective spin flip at the stage of the weak triplet complex formation. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 581–596, 1999  相似文献   

13.
The geometric aproximation is used within the framework of triple perturbation theory to evaluate the contributions to nuclear spin–spin coupling constants in the water molecule provided by the Fermi contact, the spin–orbit, and the spin–dipolar interactions. The results, obtained with SCF wave functions expanded over Gaussian basis sets of increasing quality, are compared with corresponding coupled Hartree–Fock estimates. The limits of the geometric approximation to coupling constants are discussed.  相似文献   

14.
The all-valence INDO method has been modified for the inclusion of spin–orbit coupling effects. In the method presented, the Hamiltonian includes spin–orbit coupling and the basis set constitutes the singlet and triplet determinental wave functions constructed from molecular orbitals resulting from nonrelativistic calculations. Eigenvectors obtained are later used for the evaluation of transition probabilities among different states. The results presented include lifetimes of different states of organic molecules and transition energies for halogen molecules and they are in a good agreement with experimental results. © 1992 John Wiley & Sons, Inc.  相似文献   

15.
The intersystem crossing (ISC ) between the lowest triplet and singlet states occurring in the reaction of atomic oxygen with ethylene was studied. The importance of spin–orbit coupling (SOC ) in oxirane biradicals (?R′R″—CRR*—?) is stressed through calculations where the spin–orbit matrix elements over the full Breit–Pauli SOC operator has been obtained in the singlet–triplet crossing region. The calculations are performed with a multiconfigurational linear response approach, in which the spin–orbit couplings are obtained from triplet response functions using differently correlated singlet-reference-state wave functions. Computational results confirm earlier semiempirical predictions of the spin–orbit coupling as an important mechanism behind the ring opening of oxiranes and addition of oxygen O(3P) atoms to alkenes. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Electronic structures of the weakly bound Rn2 were calculated by the two‐component Møller–Plesset second‐order perturbation and coupled‐cluster methods with relativistic effective core potentials including spin–orbit operators. The calculated spin–orbit effects are small, but depend strongly on the size of basis sets and the amount of electron correlations. Magnitudes of spin–orbit effects on De (0.7–3.0 meV) and Re (−0.4∼−2.2 Å) of Rn2 are comparable to previously reported values based on configuration interaction calculations. A two‐component approach seems to be a promising tool to investigate spin–orbit effects for the weak‐bonded systems containing heavy elements. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 139–143, 1999  相似文献   

17.
A quasirelativistic perturbative method of ab initio calculations on ground and excited molecular electronic states and transition properties within the relativistic effective core potential approximation is presented and discussed. The method is based on the construction of a state‐selective many‐electron effective Hamiltonian in the model space spanned by an appropriate set of Slater determinants by means of the second‐order many‐body multireference perturbation theory. The neglect of effective spin–orbit interactions outside of the model space allows the exploitation of relatively high nonrelativistic symmetry during the evaluation of perturbative corrections and therefore dramatic reduction of the cost of computations without any contraction of the model‐space functions. One‐electron transition properties are evaluated via the perturbative construction of spin‐free transition density matrices. Illustrative calculations on the X0+ ? A1, B0+, and (ii)1 transitions in the ICl molecule are reported. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

18.
Spin–orbit and dispersion energy contributions to the energy curves of XeF are examined. A rapid variation in the spin–orbit coupling with internuclear separation is found for both the ground and excited states. This result can explain the experimentally observed ordering of the ionic excited states when the spin–orbit perturbation couples 2σ and 2π energy curves obtained by both all-electron and effective core potential (ECP ) calculations at the first-order configuration interaction (FOCI ) level of accuracy. Damped dispersion energy contributions to the ground-state energy curve are shown to be comparable to the charge transfer contribution. The energy curve for XeF is in reasonable agreement with experimental results and a calculation of the analogous XeCl curve confirms the qualitative correctness of the calculation. The energy curves and transition moments were then applied to two problems related to the efficiency of the XeF laser. Photodissociation of the X state provides a means of removing a bottlenecked vibrational level but a calculation of the radiative transition probability between the X and A states finds the cross section is too small to yield rates competitive with collisional deactivation. The bottlenecked state may also be removed by electron dissociative attachment but the calculated energy curves for the X states of XeF and XeF? do not cross at a low energy indicating a small cross section.  相似文献   

19.
A two-component Kramers' restricted Hartree–Fock method (KRHF) has been developed for the polyatomic molecules with closed shell configurations. The present KRHF program utilizes the relativistic effective core potentials with spin–orbit operators at the Hartree–Fock (HF) level and produces molecular spinors obeying the double group symmetry. The KRHF program enables the variational calculation of spin–orbit interactions at the HF level. KRHF calculations have been performed for the HX, X2, XY(X, Y = I, Br), and CH3I molecules. It is demonstrated that the orbital energies from KRHF calculations are useful for the interpretation of spin-orbit splittings in photoelectron spectra. In all molecules studied, bond lengths are only slightly expanded, harmonic vibrational frequencies are reduced, and bond energies are significantly decreased by the spin–orbit interactions.  相似文献   

20.
An interacting spin system is investigated within the scenario of the Feynman path integral representation of quantum mechanics. Short‐time propagator algorithms and a discrete time formalism are used in combination with a basis set involving Grassmann variables coherent states to get a many‐body analytic propagator. The generating function thus obtained leads, after an adequate tracing over Grassmann variables in the imaginary time domain, to the partition function. A spin 1/2 Hamiltonian involving the whole set of interactions is considered. Fermion operators satisfying the standard anticommutation relations are constructed from the raising and lowering spin operators via the Jordan–Wigner transformation. The partition function obtained is more general than the partition function of the traditional Ising model involving only first‐neighbor interactions. Computations were performed assuming that the coupling as a function of the distance can be reasonably well represented by an Airy function. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号