首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2022,33(7):3422-3428
Separation and recovery of U(VI) and Th(IV) from rare earth minerals is a very challenging work in rare earth industrial production. In the present study, a homemade membrane emulsification circulation (MEC) extractor was used to separate U(VI) and Th(IV) from rare earth elements by using Cyphos IL 104 as an extractant. Batch experiments were carried out using a constant temperature oscillator to investigate the extraction parameters of the single element and the results indicated that Cyphos IL 104 could reach the extraction equilibrium within 30 min for all the three elements, i.e., U(VI), Th(IV), and Eu(III). Besides, the MEC extractor possessed a strong phase separation ability. The extraction efficiencies of U(VI), Th(IV), La(III), Eu(III) and Yb (III) increased with the increase of pH. La(III), Eu(III) and Yb(III) were hardly extracted when pH ≤ 1.50, which was beneficial for effectively separating U(VI) and Th(IV) from La(III), Eu(III) and Yb(III). In the multi-stages stripping experiments, when the stripping stage number was 3, the effective separation could be achieved by using HCl and H2SO4, since the stripping efficiency reached 80.0% and 100.0% for Th(IV) and U(VI), respectively. Slope method and FT-IR spectra showed that Cyphos IL 104 reacted with U(VI) and Th(IV) by chelation mechanism. The extraction of multi-elements indicated that U(VI) and Th(IV) could be well separated from the solution which contains all rare earth elements, and the extraction efficiencies of U(VI) and Th(IV) both were close to 100.0%. Based on the above experimental results, a flowchart for efficient separation of U(VI) and Th(IV) from rare earth elements was proposed.  相似文献   

2.
Fibrous membranes based on poly(ethylene oxide) and poly(l-lactide) fabricated by electrospinning were evaluated for the first time as substrates for the adsorption of tetravalent thorium (Th(IV)) and hexavalent uranium (U(VI)) from aqueous media. The membranes consisted of microfibers with diameters of approximately 2 μm as revealed by scanning electron microscopy. The adsorption of Th(IV) and U(VI) on the membrane was investigated as a function of pH, ionic strength and initial metal concentration under normal atmospheric conditions. The experimental data indicated increased affinity of the membrane for Th(IV) and U(VI), which was pH depended and reaches maximum values (>90 %) for Th(IV) and U(VI) at pH 3 and pH 6.5, respectively. The maximum adsorption capacity (q max) at optimum conditions was evaluated from the Langmuir isotherm and was found to amount 50.08 and 9.3 mmol kg?1 for Th(IV) and U(VI), respectively. In addition, studies on the effect of ionic strength on the adsorption efficiency did not show any significant effect indicating that the adsorption of Th(IV) and U(VI) on the membrane was most probably based on specific interactions and the formation of inner-sphere surface complexes. The significantly higher adsorption efficiency of the membrane for Th(IV) in acidic media (pH ≤ 3) could be utilized for a pH-triggered, selective separation of Th(IV) from U(VI) from aqueous media.  相似文献   

3.
Evaluation of tris-2-ethyl hexyl phosphate (TEHP) for counter-current extraction and separation of U(VI) from a mixture of U(VI)–Th(IV)–Y(III) from nitric acid medium was carried out under wide experimental conditions. Batch extraction studies were carried out to investigate the effect of nitric acid concentration in feed solution, U(VI)/Th(IV) ratio and extractant concentration and the results were compared with established solvent such as tri-n-butyl phosphate (TBP) for separation of U(VI) from nitric acid medium. McCabe–Thiele diagrams for extraction as well as stripping of U(VI) were constructed under simulated conditions. Based on batch experiments, six stage counter-current extraction studies were conducted under various TEHP concentration and it was observed that 0.1 M TEHP/n-paraffin was most suitable for selective recovery of U(VI) from a mixture of U(VI)–Th(IV). An optimized condition, 0.1 M TEHP/n-paraffin, 2 M HNO3 in feed and six number of stages was evaluated for selective extraction and stripping of U(VI) from a solution containing mixture of U(VI)–Th(IV)–Y(III) in nitric acid medium. The U(VI) in strip solution was precipitated using 30 % H2O2 at pH ~3. Average particle size of the final precipitate was found to be ~33 μm.  相似文献   

4.
    
Zusammenfassung Es wird die Optimierung der Extraktion von Metallkationen [Sc(III), Cr(III), Mn(II), Fe(III), Co(II), Cu(II), Zn(II), Y(III), Ag(I), Cd(II), La(III), Ce(III), Eu(III), Yb(III), Hg(II), Pb(II), Th(IV), U(IV, VI) und Am(III)] in Form gemischter Komplexe mit Hexafluoracetylaceton und neutralen Donatoren mit Stickstoffatomen bzw. P = O-Gruppen beschrieben. Über thermische und gaschromatographische Eigenschaften der extrahierten flüchtigen Verbindungen wird berichtet. Optimale Ergebnisse wurden mit Tri-n-butylphosphinoxid als Donator erzielt.
Volatile hexafluoroacetylacetonates for the isolation and gas-chromatographic determination of trace metals
Summary The optimization of the extraction of metal cations [Sc(III), Cr(III), Mn(II), Fe(III), Co(II), Cu(II), Zn(II), Y(III), Ag(I), Cd(II), La(III), Ce(III), Eu(III), Yb(III), Hg(II), Pb(II), Th(IV), U(IV, VI) and Am(III)] in the form of mixed-ligand complexes with hexafluoroacetylacetone and neutral donators with nitrogen atoms or P = O-groups is described. The thermal and gas-chromatographic characteristics of the extracted volatile compounds are reported. Optimal results were achieved using tri-n-butylphosphine oxide as donator.
  相似文献   

5.
Summary A method is described for functionalizing acetoacetamide chelating groups onto microcrystalline cellulose (Cell-AcAc). This material shows a significant affinity for Fe(III), Cu(II) and U(VI) and no or very less affinity for the M(I) ions (M=Na, K), M(II) ions (M= Mg, Ca; Fe, Co, Ni, Zn), La(III) and Y(III) including Th(IV). The obtained K d values offer a column separation method for U(VI) ions from the rest of above-mentioned metal ions except Fe(III). Cell-AcAc and its Cu(II) complexes are characterized by means of FT-IR spectra.
Darstellung, Charakterisierung und Anwendung von Ionenaustauschmaterial aus Cellulose mit chemisch gebundener Acetoacetamid-Gruppe
Zusammenfassung Die Darstellung von immobilisiertem Acetoacetamid auf mikrokristallinem Cellulosepulver (Cell-AcAc) wird beschrieben. Der Ionenaustauscher Cell-AcAc hat eine ausgeprägte Affinität für Fe(III), Cu(II) and U(VI), aber nahezu keine für die M(I)-Ionen (M=Na, K) M(II)-Ionen (M=Mg, Ca; Fe, Co, Ni, Zn), La(III), Y(III) sowie Th(IV). Die erhaltenen K d-Werte ermöglichen für U(VI)-Ionen eine quantitative säulen-chromatographische Trennung von den anderen genannten Kationen mit Ausnahme von Fe(III). Das Ionenaustauschmaterial Cell-AcAc und sein Cu(II)-Komplex wurden durch FT-IR-Spektren charakterisiert.
  相似文献   

6.
The triphosphate-crosslinked magnetic chitosan resins (TPP-MCR) with a diameter range of 200–350 nm were synthesized for the adsorption of U(VI) and Th(IV) ions from aqueous solutions. The adsorption experiments were conducted in both mono-component systems with pure actinide solution and bi-component systems with different U/Th mass ratios. The maximum adsorption capacities in mono-component systems determined by Langmuir model were 169.5 and 146.8 mg g?1 for U(VI) and Th(IV), respectively. In bi-component systems, U(VI) and Th(IV) adsorption capacities were reduced significantly, and the combined sorption capacities were substantially lower (almost halved) compared to those obtained by the addition of sorption capacities using mono-component solutions, indicating that U(VI) and Th(IV) compete for the same sorption sites. Adsorption–desorption experiments for five cycles illustrated the feasibility of the repeated use of TPP-MCR for the adsorption of U(VI) and Th(IV) ions.  相似文献   

7.
Strelow FE  Wienert CH  van der Walt TN 《Talanta》1974,21(11):1183-1191
Indium can be separated from Zn, Pb(II), Ga, Ca, Be, Mg, Ti(IV), Mn(II), Fe(III), Al, U(VI), Na, Ni(II) and Co(II) by selective elution with 0.50M hydrochloric acid in 30% aqueous acetone from a column of AG50W-X8 cation-exchange resin, all the other elements being retained by the column. Lithium is included in the elements retained by the column when 0.35M hydrochloric acid in 45% aqueous acetone is used for eluting indium, but the elution of indium is slightly retarded. Ba, Sr, Zr, Hf, Th, Sc, Y, La and the lanthanides, Rb and Cs should also be retained according to their distribution coefficients. Cd, Bi(III), Au(III), Pt(IV), Pd(II), Rh(III), Mo(VI) and W(VI) can be eluted with 0.20M hydrobromic acid in 50% aqueous acetone before the elution of indium, and Ir(III), Ir(IV), As(III), As(V), Se(IV), Tl(III), Hg(II), Ge(IV), Sb(III) and Sb(V), though not investigated in detail, should accompany these elements. Relevant distribution coefficients and elution curves and results for analyses of synthetic mixtures of indium with other elements are presented.  相似文献   

8.
Dissolution of UO2, U3O8, and solid solutions of actinides in UO2 in subacid aqueous solutions (pH 0.9–1.4) of Fe(III) nitrate was studied. Complete dissolution of the oxides is attained at a molar ratio of ferric nitrate to uranium of 1.6. During this process actinides pass into the solution in the form of U(VI), Np(V), Pu(III), and Am(III). In the solutions obtained U(VI) is stable both at room temperature and at elevated temperatures (60 °C), and at high U concentrations (up to 300 mg mL?1). Behavior of fission products corresponding to spent nuclear fuel of a WWER-1000 reactor in the process of dissolution the simulated spent nuclear fuel in ferric nitrate solutions was studied. Cs, Sr, Ba, Y, La, and Ce together with U pass quantitatively from the fuel into the solution, whereas Mo, Tc, and Ru remain in the resulting insoluble precipitate of basic Fe salt and do not pass into the solution. Nd, Zr, and Pd pass into the solution by approximately 50 %. The recovery of U or jointly U + Pu from the dissolution solution of the oxide nuclear fuel is performed by precipitation of their peroxides, which allows efficient separation of actinides from residues of fission products and iron.  相似文献   

9.
The extraction of U(VI), Ce(IV), La(III), Nd(III), Sm(III), and Y(III) from an aqueous solution of Na2CO3 (0.25 mol/L) resulting from oxidative dissolution of U(IV) in the presence of H2O2 into a solution of methyltrioctylammonium carbonate (0.25 mol/L) in toluene. It was found that βU(VI)/Ln(III) values vary from ~8 to 3290 as the O : W ratio changes from 2 : 1 to 10 : 1, while βU(VI)/Ce(IV) varies from ~1.5 to 10, which allows for the extraction separation of U(VI) from Ce(IV) in a 8- to 10-stage counter-current extraction cascade and from Ln(III) in 2- to 3-stage cascade under the same conditions.  相似文献   

10.
A glycidyl methacrylate/divinylbenzene resin containing triethylenetetramine functional group was synthesized. The adsorption behavior of the obtained resin toward U(VI), Th(IV), and La(III) in aqueous solutions was investigated by batch and column techniques at different experimental conditions. Kinetic and thermodynamic characteristics of the adsorption process have been investigated. The regeneration of the loaded resin was also studied.  相似文献   

11.
Dev K  Pathak R  Rao GN 《Talanta》1999,48(3):579-584
The complexing properties (capacity, pH effect, breakthrough curve) of a chelating resin, containing bicine ligands, were investigated for La(III), Nd(III), Tb(III), Th(IV) and U(VI). Trace amounts of these metal ions were quantitatively retained on the resin and recovered by eluting with 1 M hydrochloric acid. The capacity of the resin for La(III), Nd(III), Tb(III), Th(IV) and U(VI) was found to be 0.35, 0.40, 0.42, 0.25 and 0.38 mmol g(-1), respectively. Separation of U(VI) and Th(IV) from Ni(II), Zn(II), Co(II) and Cu(II) in a synthetic solution was carried out.  相似文献   

12.
Various β-diketone chelates of Sc(III), Y(III), Th(IV), U(IV). U(VI), Zr(IV) and the lanthanides have been prepared, characterized and investigated to determine if they were volatile and stable. The ligands employed were acetylacetone(AA), trifluoroacetylacetone(TFAA), hexafluoroacetylacetone(HFAA), and dipivaloyl-methane(DPM). The chelates were sublimed in a fractional vacuum sublimator and the recrystallization temperature zones recorded for individual chelates. None of the lanthanide acetylacetonates arc volatile but the Sc(III), Th(IV), U(IV) and dioxouranium(VI) acetylacetonates are thermally stable and quite volatile below 150° at 1 mm mercury pressure. The lanthanide, Sc(III), Y(III), and dioxouranium(VI) trifluoroacetylacetonates are volatile and can be vacuum-sublimed below 150°, but are thermally unstable; only the Th(IV) chelate is sufficiently stable to be quantitatively recovered by sublimation. The Sc(III), Y(III), Th(IV), and lanthanide hexafluoroacetylacetonates are thermally stable and easily sublimed below 125° in vacua or at atmospheric pressure. All the dipivaloylmethanates studied were thermally stable and volatile and could be quantitatively recovered by vacuum sublimation below 140°.The volatility of the HFAA and DPM lanthanide chelates increased with an increase in atomic weight (a decrease in ionic radii) of the lanthanides. The lack of volatility observed for the lanthanide AA and TFAA chelates is attributed to the fact that only hydrates of the chelates were formed, which decomposed at elevated temperatures in vacuo to form basic polymeric compounds.Separations are proposed for numerous binary mixtures of the β-diketone chelates of the lanthanide and related elements. Recrystallization temperature zones are given for the following binary mixtures which were quantitatively resolved by the fractional sublimation technique; 118-88° for Nd(DPM)3 and 84-48° for Tm(DPM)3; 72-49° for Sc(DPM) and 120-88° for Pr(DPM); 128-79° for La(DPM)3 and 79-47° for Yb(DPM)3; 70-47° for Th(TFAA)4 and 116-96° for Gd(TFAA)3; 52-42° for Th(HFAA)4 and 120-80° for La(HFAA)3.  相似文献   

13.
In view to separate La(III), Pr(III) and U(VI) ions, from aqueous solutions, batch experiments are carried out for the sorption and desorption of these ions onto and from a novel functionalized resin. The sorption capacities varied from 1.06 to 47.30 mg/g and increased in the following order La(III), Pr(III) and U(VI), while yields desorption ranged from 73.0 to 94.3% and increased in the following order Pr(III), La(III) and U(VI). Considering the largest difference in sorption capacity and desorption yield of these three elements, at different operates conditions, this material can be potential candidate for the separation of U(VI), Pr(III) and La(III) ions from nuclear and other industrial wastewater.  相似文献   

14.
A new chromatographic extraction method has been developed using Amberlite XAD-16 (AXAD-16) resin chemically modified with (3-hydroxyphosphinoyl-2-oxo-propyl)phosphonic acid dibenzyl ester (POPDE). The chemically modified polymer was characterized by 13C CPMAS and 31P solid-state NMR, Fourier Transform–NIR–FIR–Raman spectroscopy, CHNPS elemental analysis, and thermogravimetric analysis. Extraction studies performed for U(VI), Th(IV), and La(III) showed good distribution ratio (D) values of approximately 103, even under high acidities (1–4 M). Various physiochemical parameters that influence the quantitative metal ion extraction were optimized by static and dynamic methods. Data obtained from kinetic studies revealed that a time duration of 10 min was sufficient to achieve complete metal ion extraction. Maximum metal sorption capacity values under optimum pH conditions were found to be 1.38, 1.33, and 0.75 mmol g–1 for U(VI), Th(IV), and La(III), respectively. Interference studies performed in the presence of concentrated diverse ions and electrolyte species showed quantitative analyte recovery with lower limits of analyte detection being 10 and 20 ng cm–3 for U(VI) and both Th(IV) and La(III), respectively. Sample breakthrough studies performed on the extraction column showed an enrichment factor value of 330 for U(VI) and 270 for Th(IV) and La(III), respectively. Analyte desorption was effective using 15 cm3 of 1 M (NH4)2CO3 with >99.8% analyte recovery. The analytical applicability of the developed resin was tested with synthetic mixtures mimicking nuclear spent fuels, seawater compositions and real water and geological samples. The rsd values of the data obtained were within 5.2%, thereby reflecting the reliability of the developed method.  相似文献   

15.
Distribution ratios of europium(III), thorium(IV), uranium(VI) and plutonium(IV) ions on Amberlyst A-15, a macroreticular polystyrene sulfonate resin, after extraction in HTTA-TBP-Shell Sol-T and HTTA-TOPO-benzene solutions have been determined as a function of the aqueous acidity. The affinity orders were EuPu>Th>U and Eu>Th>Pu>U in the former and the latter solutions, respectively. Separation factors were computed from the observed Kd values. A procedure for the separation of a mixture of Eu(III), Th(IV), and U(VI) ions in HTTA-TOPO-benzene solution in an ion-exchange column is described.  相似文献   

16.
Manku  G. S.  Gupta  R. D.  Bhat  A. N.  Jain  B. D. 《Mikrochimica acta》1970,58(5):836-840
Summary Oximidobenzotetronic acid (OBTA) is proposed as a sensitive spectrophotometric reagent for the estimation of 0.5–3.0 ppm of copper(II) at 427 nm in 50% dioxan at pH 5.3–7.5. For the estimation of 2 ppm Cu(II), 1.3 ppm Ni(II), 1.3 ppm Co(II), 3.2 ppm Fe(II), 10.3 ppm Fe(III), 9.7 ppm Ce(IV), 300 ppm acetate, 160 ppm oxalate, 95 ppm tartrate, 50 ppm citrate, as well as Zn(II), Cd(II), Hg(II)) Pb(II), Mn(II), As(III) as well as (V), Th(IV), Be(II), Ce(III), La(III), V(V) and Mo(VI), even when present in large quantities, do not interfere. The interference due to 25 ppm Bi(III), 20 ppm Sb(III), 20 ppm Sn(II), 25 ppm Sn(IV) and 30 ppm W(VI) can be removed by the addition of 95 ppm tartrate ions.
Zusammenfassung Oximidobenzotetronsäure wurde als empfindliches Reagens zur spektrophotometrischen Bestimmung von 0,5 bis 3,0 ppm Kupfer(II) bei 427 nm in 50%iger Dioxanlösung bei pH 5,3 bis 7,5 vorgeschlagen. Die Anwesenheit von 1,3 ppm Ni(II), 1,3 ppm Co(II), 3,2 ppm Fe(II), 10,3 ppm Fe(III), 9,7 ppm Ce(IV), 300 ppm Acetat, 160 ppm Oxalat, 95 ppm Tartrat, 50 ppm Citrat sowie die Anwesenheit auch großer Mengen Zn(II), Cd(II), Hg(II), Pb(II), Mn(II), As(III) bzw. (V), Th(IV), Be(II), Ce(III), La(III), V(V) und Mo(VI) stören die Bestimmung von 2 ppm Cu(II) nicht. Der störende Einfluß von 25 ppm Bi(III), 20 ppm Sb(III), 20 ppm Sn(II), 25 ppm Sn(IV) und 30 ppm W(VI) kann durch Zusatz von 95 ppm Tartrat beseitigt werden.
  相似文献   

17.
The anion exchange of rare earths(III), thorium(IV), protactinium(V) and uranium (VI) from thiocyanate-chloride media was investigated. The equilibrium, distribution study showed that the rare earths(III) and yttrium(III) were not significantly adsorbed on a basic anion-exchangc resin, while thorium(IV), protactinium(V) and uranium(VI) were strongly adsorbed. Adsorption from the thiocyanate-chloride solutions is in the order, U(Vl) > Pa(V) > Th(IV). The separation of rare earths(III) or yttrium(III), thorium(IV), protactinium(V) and uranium(VI) was successfully accomplished by column elution in thiocyanate-chloride media. A rapid and effective ion-exchange method for separating protactinium-233 from irradiated thorium(IV) is also presented.  相似文献   

18.
Extraction efficiency of uranium and transuranium elements (Np, Pu, Am and Cm) with tert-butylthiacalix[4]arene TCA from carbonate-alkaline solutions is studied and compared with that of europium (III). Plutonium (III, IV) extraction efficiency with TCA is found to be lower comparing with that of trivalent americium and europium. Extraction efficiency of studied radionuclides decreases as following: Am ? Eu ? Pu (III), U(VI), Np (V) > Pu (IV) at pH 12. Carbonate concentration increase in aqueous phase suppresses significantly extraction of all studied radionuclides, except americium. This condition can be used for americium individual recovery from complex radioactive carbonate-alkaline solutions.  相似文献   

19.
A new chelating polymeric sorbent is developed using Merrifield chloromethylated resin anchored with calix[4]arene-o-vanillinsemicarbazone for simultaneous separation and solid phase extractive preconcentration of U(VI) and Th(IV). The “upper-rim” functionalized calix[4]arene-o-vanillinsemicarbazone was covalently linked to Merrifield resin and characterized by FT-IR and elemental analysis. The synthesized chelating polymeric sorbent shows superior binding affinity towards U(VI) and Th(IV) under selective pH conditions. Various physico-chemical parameters that influence the quantitative extraction of metal ions were optimized. The optimum pH range and flow rates for U(VI) and Th(IV) were 6.0-7.0 and 1.0-4.0 ml min−1 and 3.5-4.5 and 1.5-4.0 ml min−1, respectively. The total sorption capacity found for U(VI) and Th(IV) was 48734 and 41175 μg g−1, respectively. Interference studies carried out in the presence of diverse ions and electrolyte species showed quantitative analyte recovery (98-98.5%) with lower limits of detection, 6.14 and 4.29 μg l−1 and high preconcentration factors, 143 and 153 for U(VI) and Th(IV), respectively. The uptake and stripping of these metal ions on the resin were fast, indicating a better accessibility of the metal ions towards the chelating sites. The analytical applicability of the synthesized polymeric sorbent was tested with some synthetic mixtures for the separation of U(VI) and Th(IV) from each other and also from La(III), Cu(II) and Pb(II) by varying the pH and sequential acidic elution. The validity of the proposed method was checked by analyzing these metal ions in natural water samples, monazite sand and standard geological materials.  相似文献   

20.
A new class of polymeric resin has been synthesized by grafting Merrifield chloromethylated resin with (dimethyl amino-phosphono-methyl)-phosphonic acid (MCM-DAPPA), for the preconcentration of U(VI), Th(IV) and La(III) from both acidic wastes and environmental samples. The various chemical modification steps involved during grafting process are characterized by FT-IR spectroscopy, 31P and 13C-CPMAS (cross-polarized magic angle spin) NMR spectroscopy and CHNS/O elemental analysis. The water regain capacity data for the grafted polymer are obtained from thermo-gravimetric (TG) analysis. The influence of various physico-chemical parameters during the quantitative extraction of metal ions by the resin phase are studied and optimized by both static and dynamic methods. The significant feature of this grafted polymer is its ability to extract both actinides and lanthanides from high-level acidities as well as from near neutral conditions. The resin shows very high sorption capacity values of 2.02, 0.89 and 0.54 mmol g−1 for U(VI), 1.98, 0.63 and 0.42 mmol g−1 for Th(IV) and 1.22, 0.39 and 0.39 mmol g−1 for La(III) under optimum pH, HNO3 and HCl concentration, respectively. The grafted polymer shows faster phase exchange kinetics (<5 min is sufficient for 50% extraction) and greater preconcentration ability, with reusability exceeding 20 cycles. During desorption process, all the analyte ions are quantitatively eluted from the resin phase with >99.5% recovery using 1 M (NH4)2CO3, as eluent. The developed grafted resin has been successfully applied in extracting Th(IV) from high matrix monazite sand, U(VI) from sea water and also U(VI) and Th(IV) from simulated nuclear spent fuel mixtures. The analytical data obtained from triplicate measurements are within 3.9% R.S.D. reflecting the reproducibility and reliability of the developed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号