首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with 233U and 242Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA® column coupled to a UTEVA® column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of 234U/235U, 238U/235U, 236U/235U, and 240Pu/239Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.  相似文献   

2.
Plutonium isotopes were measured by alpha-spectrometry and ICP-MS in sediment samples from two European lakes: Blelham Tarn in U.K. and Stechlin lake in Germany. The ICP-MS measurements were made after alpha-spectrometry counting of the planchets. The planchets were prepared by traditional electrodeposition method after radiochemical extraction, separation and purification of the Pu fraction. A short radiochemical separation using plutonium selective resin, between the two spectrometry measures, is presented. The results show that these two complementary methods are in good agreement, the plutonium activity concentrations are the same. Alpha-spectrometry allows the 238Pu determination and ICP-MS individual measurement of 239Pu and 240Pu. 238Pu/239+240Pu and 240Pu/239Pu ratios are calculated to determine the plutonium contamination source. With the results of these two techniques, it could be demonstrate that the plutonium is of global fallout origin.  相似文献   

3.
A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of 237Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry. 238U can interfere with 239Pu measurement by ICP-MS as 238UH+ mass overlap and 237Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4?C6 h, and can also be used for emergency response. 239Pu, 242Pu and 237Np were measured by ICP-MS, while 236Pu, 238Pu, and 239Pu were measured by alpha spectrometry.  相似文献   

4.
Oxygen and ammonia were evaluated as reaction gases for the chemical separation between uranium and plutonium in the bandpass reaction cell or dynamic reaction cell (DRC) of the ELAN DRC II mass spectrometer. Both uranium and plutonium demonstrated similar reactivity with oxygen giving rise to corresponding oxides. At the same time, remarkable selectivity in the reaction with ammonia was observed. While uranium was rapidly converted into UNH 2+ and UN2H 4+ , plutonium remained unreactive in the DRC pressurized with ammonia. This difference in the reactivity allowed the determination of plutonium isotopes in urine and water samples containing excess uranium without preceding separation procedure. Detection limits of 0.245, 0.092, 0.270 and 0.237 ng L–1 were obtained for 238Pu, 239Pu, 240Pu and 242Pu, respectively, in urine spiked with 10 g L–1 of U.  相似文献   

5.
Simultaneous isotopic analysis of uranium and plutonium using thermal ionization mass spectrometer coupled to a multi-collector detection assembly with 9 Faraday cups has been reported earlier. Subsequently investigations have been carried out (1) to understand the applicability of correction methodologies available to account for the contribution of238Pu at238U and (2) to evaluate the effectiveness of these methodologies on the accuracy of235U/238U atom ratio being determined, particularly when samples containing different U/Pu atom ratios. Isotopic fractionation for both U and Pu in the simultaneous isotopic analysis has been compared with the results of the individual analysis of these elements. The different isotopic fractionation factors observed for U were attributed to different conditions of analysis. There was no significant difference in the isotopic fractionation patterns for Pu. The consideration to extend this method to actual samples from our observations on synthetic samples with diferent U/Pu atom ratios containing U and Pu isotopic reference standards is described.  相似文献   

6.
This article discusses the age dating results of plutonium/uranium chronometers with a focus on the consequences for age plutonium determination when the basic assumptions of the methodology are not fully met: Incomplete removal of the daughter nuclides at the production date and uranium contamination of plutonium samples. In addition to the 238Pu/234U, 239Pu/235U and 240Pu/236U, the 242Pu/238U chronometer is discussed. The 242Pu/238U radiochronometer has only scarcely been used, due to its high sensitivity to residual uranium. However, it can be a very useful indicator for uranium contamination of aged plutonium samples.  相似文献   

7.
The on-site laboratory (OSL) at Rokkasho Reprocessing Plant (RRP) is jointly operated by the Japanese authority Nuclear Material Control Centre and the International Atomic Energy Agency (IAEA) and provides, together with the Nuclear Material Laboratory (NML) at Seibersdorf, analytical services to the IAEA’s inspectorate. OSL deals with a variety of samples typical to a reprocessing plant including pure product solutions of uranium and plutonium but also mixed U/Pu solutions originating from various stages of the chemical process. For a significant proportion of the samples, the requirement on measurement accuracy and precision from the Inspectorate makes the use of thermal ionization mass spectrometry (TIMS) indispensible. Until recently, all samples intended for TIMS had to undergo time-consuming U/Pu separation before isotope dilution measurement. The need for rapid reporting of analytical results for certain safeguards samples evoked the idea of performing TIMS measurements without prior U/Pu separation for mixed U/Pu products as they are obtained from the PUREX process at RRP. For this purpose, a systematic study was initiated to probe the figure of merits and limitations of conducting TIMS analyses on mixed U/Pu samples and, in particular, whether the accuracy and precision of the main ratios of interest, n(235U)/n(238U) and n(240Pu)/n(239Pu), are influenced by the presence of larger amounts of the other element. A series of synthetic mixtures with U/Pu ratios ranging from 1:10 up to 100:1 were prepared and measured in both laboratories—OSL and NML—using ThermoFisher TRITON multi-collector TIMS instruments. For the n(235U)/n(238U) ratio, interference due to 238Pu was observed which can be significant depending on the U/Pu ratio and the 238Pu abundance. However, for the n(240Pu)/n(239Pu) ratio, which is of premier importance for safeguarding RRP, no significant interference arising from the concomitant U was detected independently of enrichment. Even in samples with an excess of U (U/Pu ratio of 100:1), compliance with International Target Values (ITV2010) was demonstrated for n(240Pu)/n(239Pu) results with a relative difference to certified not exceeding 0.01 %.  相似文献   

8.
Trace metallic impurity analysis by spectroscopic techniques is one of the important steps of chemical quality control of nuclear fuel materials. Depending on the burn-up and the storage time of the fuel, there is an accumulation of 241Am in plutonium based fuel materials due to β decay of 241Pu. In this paper, attempts were made to develop a method for separation of 241Am from 1.2 kg of analytical solid waste containing 70% U, 23% Pu, 5% Ag and 1–2% C as major constituents along with other minor constituents generated during trace metal assay of plutonium based fuel samples by d. c. arc carrier distillation atomic emission spectrometry. A combination of ion exchange, solvent extraction and precipitation methods were carried out to separate ~45 mg of 241Am as Am(NO3)3 from 15 L of the analytical waste solution. Dowex 1×4 ion exchange chromatographic method was used for separation of Pu whereas 30% TBP–kerosene was utilized for separation of U. Am was separated from other impurities by fluoride precipitation followed by conversion to nitrate. The recovery of Pu from ion exchange chromatographic separation step was ~93% while the cumulative recovery of Am after separation process was found to be ~90%.  相似文献   

9.
The age of plutonium is defined as the time since the last separation of the plutonium isotopes from their daughter nuclides. In this paper, a method for age determination based on analysis of 241Pu/241Am and 240Pu/236Pu using ICP-SFMS is described. Separation of Pu and Am was performed using a solid phase extraction procedure including UTEVA, TEVA, TRU and Ln-resins. The procedure provided separation factors adequate for this purpose. Age determinations were performed on two plutonium reference solutions from the Institute for Reference Materials and Measurements, IRMM081 (239Pu) and IRMM083 (240Pu), on sediment from the Marshall Islands (reference material IAEA367) and on soil from the Trinity test site (Trinitite). The measured ages based on the 241Am/241Pu ratio corresponded well with the time since the last parent-daughter separations of all the materials. The ages derived from the 236U/240Pu ratio were in agreement for the IRMM materials, but for IAEA367 the determination of 236U was interfered by tailing from 238U, and for Trinitite the determined age was biased due to formation of 236U in the detonation of the “Gadget”.  相似文献   

10.
Summary The recent discovery of the migration of plutonium in groundwater away from underground nuclear tests at the Nevada Test Site has spawned considerable interest in the mechanisms by which plutonium may be released to the environment by a nuclear explosion. A suite of solid debris samples was collected during drilling through an expended test cavity and the overlying collapse chimney. Uranium and plutonium were analyzed for isotope ratios and concentrations using high precision magnetic sector inductively coupled mass spectrometry. The data unequivocally shows that plutonium may be dispersed throughout the cavity and chimney environment at the time of the detonation. The 239Pu/240Pu ratios are also fractionated relative to initial plutonium isotope ratio for the test device. Fractionation is the result of the volatilization of uranium and production of 239Pu by the reaction 238U(n,γ). We conclude that for the test under consideration plutonium was deposited outside of the confines of the cavity by dynamic processes in early-time and it is this plutonium that is most likely transferred to the groundwater regime.  相似文献   

11.
A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead. Multiple vacuum box locations may be set-up to supply several ICP-MS units with purified sample fractions such that a high sample throughput may be achieved, while still allowing for rapid measurement of short-lived actinides by alpha spectrometry.  相似文献   

12.
A simple, rapid and reliable method was developed for the simultaneous determination of uranium and plutonium isotopes by alpha-spectrometry using a single source. A new uranium tracer230U was applied as well as the236Pu tracer to determine overall yields of uranium and plutonium isotopes throughout the entire procedure employed. The analytical procedure consists of sample leaching with 8N HNO3 solution, purification by solvent extraction, simultaneous electrodeposition of U and Pu, and subsequent alpha-spectrometry with a silicon detector. In the solvent extraction using TOA/xylene from 8N HNO3 solution, the preferential extractability of Pu rather than U permits to purify simultaneously the trace amounts of Pu and the macro amounts of U, as in the case of ordinary soil samples, resulting in favourable peak heights for both isotopes. From a single alpha-spectrum, the determinations of238U,234U (and their ratio of234U/238U),239+240Pu, and238Pu contents were conveniently carried out after correcting the overall yields obtained from230U and236Pu activities in the same spectrum. This analytical method was satisfactorily applied to the determination of U and Pu isotope contents in some soils.  相似文献   

13.
A combination of alpha-spectrometry, liquid scintillation counting (LSC) and accelerator mass spectrometry (AMS) was used for the determination of plutonium isotopes. 238Pu and 239+240Pu were measured by alpha-spectrometry after separation of Pu by anion-exchange using 236Pu tracer as recovery monitor. After alpha-measurement, one part of the sample was dissolved for determining 241Pu by LSC. Another part was used for the measurement of the 240Pu/239Pu atom ratio by AMS at VERA. Thus, it was possible to obtain complete information on the Pu isotopic composition of the samples. This method was applied to environmental reference samples and samples contaminated from nuclear reprocessing.  相似文献   

14.
Uranium and plutonium were determined in the Tehua II-21 sediment core collected from the Gulf of Tehuantepec, Mexico. The analyses were performed using radiochemical separation and alpha spectroscopy. Activity concentrations of alpha emitters in the sediment samples were from 2.56 to 43.1 Bq/kg for 238U, from 3.15 to 43.1 Bq/kg for 234U and from 0.69 to 2.95 Bq/Kg for 239+240Pu. Uranium activity concentration in marine sediment studied is generally high compared with those found in sediments from other marine coastal areas in the world. The presence of relatively high concentrations of anthropogenic plutonium in the sediments from the Gulf of Tehuantepec suggests that anthropogenic radionuclides have been incorporated and dispersed into the global marine environment.  相似文献   

15.
Summary A new high-sensitivity plutonium bioassay program employing thermal ionization mass spectrometry (TIMS) has been developed to monitor Savannah River Site employees for intakes of PuO2. The U.S. Department of Energy requires bioassay laboratories which have the ability to detect a 100 mRem, 50-year committed effective dose equivalent (CEDE) intake of radioactive material. For PuO2, traditional alpha-spectrometry methods are not sensitive enough to meet this specification. To comply with this requirement, a radiochemical TIMS method was developed to determine Pu in urine bioassay samples. Four radiochemical separation steps were used to purify Pu from urine to ensure samples were free from matrix effects that interfere with TIMS analysis. These included precipitation, ion-extraction chromatography, electrodeposition, and ion-exchange chromatography. A batch of reagent blanks determined the detection limit for this method was 0.59 fg 239Pu/l (1.3 µBq 239Pu/l). The 239Pu concentration was also measured in 20 urine blank samples to determine the minimum 239Pu concentration that would indicate an occupational intake. A Probit plot was constructed for the results and the 99 th percentile of the urine blanks showed that the minimum 239Pu concentration that would indicate an uptake was 2.4 fg/l (5.5 µBq/l).  相似文献   

16.
The origin and release date of environmental plutonium have been assessed by the measurement of plutonium and americium isotopic composition. The applicability and sensitivity of different plutonium isotope ratios, 240Pu/239Pu and 241Pu/239Pu measured by inductively coupled plasma sector field mass spectrometry and 238Pu/239Pu analysed by alpha spectrometry, have been evaluated for origin determination in several types of environmental samples. With use of mixing models the contribution of different sources (e.g. global fallout or Chernobyl) can be calculated. By the measurement of the 241Am/241Pu isotope ratio, the release date (i.e. formation of 241Pu by irradiation) can be estimated in environmental samples, which is an important parameter to distinguish recent plutonium release from previous (e.g. Chernobyl) emissions.  相似文献   

17.
The possibility of using di-(2-ethylhexyl)-phosphoric acid (HDEHP) in solvent extraction for the separation of neptunium, plutonium, americium and curium from large amounts of uranium was studied. Neptunium, plutonium, americium and curium (as well as uranium) were extracted from HNO3, whereafter americium and curium were back-extracted with 5M HNO3. Thereafter was neptunium back-extracted in 1M HNO3 containing hydroxylamine hydronitrate. Finally, plutonium was back-extracted in 3M HCl containing Ti(III). The method separates238Pu from241Am for α-spectroscopy. For ICP-MS analysis, the interferences from238U are eliminated: tailing from238U, for analysis of237Np, and the interference of238UH+ for analysis of239Pu. The method has been used for the analysis of actinides in samples from a spent nuclear fuel leaching and radionuclide transport experiment.  相似文献   

18.
Age determination of single plutonium particles was demonstrated using five particles of the standard reference material, NBS 947 (Plutonium Isotopic Standard. National Bureau of Standards, Washington, D.C. 20234, August 19, 1982, currently distributed as NBL CRM-137) and the radioactive decay of 241Pu into 241Am. The elemental ratio of Am/Pu in Pu particles found on a carbon planchet was measured by wavelength dispersive X-ray spectrometry (WDX) coupled to a scanning electron microscope (SEM). After the WDX measurement, each plutonium particle, with an average size of a few μm, was picked up and relocated to a silicon wafer inside the SEM chamber using a micromanipulator. The silicon wafer was then transferred to a quartz tube for dissolution in an acid solution prior to chemical separation. After the Pu was chemically separated from Am and U, the isotopic ratios of Pu (240Pu/239Pu, 241Pu/239Pu and 242Pu/239Pu) were measured with a thermal ionization mass spectrometer (TIMS) for the calculation of Pu age. The age of particles determined in this study was in good agreement with the expected age (35.9 a) of NBS 947 within the measurement uncertainty.  相似文献   

19.
Environmental contamination by artificial radionuclides and the evaluation of their sources require precise isotopic analysis and accurate determination of actinide elements above all plutonium and americium. These can be achieved by alpha spectrometry or by inductively coupled plasma mass spectrometry (ICP-MS) after chemical separation. In the present work, a simple, rapid method has been developed for the sequential separation of actinide elements from aqueous solutions and their determination by alpha spectrometry. Extraction chromatography was applied to the separation of 241Am, 244Cm, 239 + 240,238Pu, 237Np and 238,235,234U using microporous polyethylene supporting tri-n-octylamine as the stationary phase and hydrochloric acid with and without reducing agents as the mobile phase. Actinide in 9 M HCl solution is introduced into the anion exchange column; Pu (IV), Np (IV) and U(VI) are retained on the column while Am (III) and Cm passed through. Pu is eluted first, reductively, after which, Np and then U are eluted. The method can be applied to all aqueous solutions which do not contain strong complexing or precipitation agents for the elements considered.  相似文献   

20.
Summary We have developed cleanroom compatible techniques for processing bone samples for characterization of their uranium and plutonium content. The bone samples are dried and ashed in quartz crucibles placed inside cleanroom compatible thermal ashing furnaces. The bone ash is dissolved in ultra-pure acids prepared by sub-boiling distillation. The uranium and plutonium in the samples are isolated and purified by ion-exchange chromatography and measured by thermal ionization mass spectrometry. The technique is capable of detecting 74 picograms of 238U and 8 femtograms of 239Pu in 100 mg bone ash samples. If the ash contains larger amounts of uranium and plutonium, the technique can be used to isotopically fingerprint the material to identify potential origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号