首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on a high resolution sapphire backscattering monochromator installed at the Dynamics beamline P01 of PETRA III. The device enables nuclear resonance scattering experiments on Mössbauer isotopes with transition energies between 20 and 60 keV with sub-meV to meV resolution. In a first performance test with 119Sn nuclear resonance at a X-ray energy of 23.88 keV an energy resolution of 1.34 meV was achieved. The device extends the field of nuclear resonance scattering at the PETRA III synchrotron light source to many further isotopes like 151Eu, 149Sm, 161Dy, 125Te and 121Sb.  相似文献   

2.
The enhancement of Raman scattering (RS), resonance Raman scattering (RRS), and fluorescence from molecules adsorbed on silver-island films is reported. A heirarchy of enhancements is found: 105 for RS, 103 for RRS, and 0.1–10 for fluorescence, depending on the quantum yield of the free molecule. Using the framework of the electromagnetic theory of surface-enhanced Raman scattering, generalized to treat molecular resonance phenomena, we develop a unified picture of the role of the surface plasmon resonances, and the surface-induced damping, in the light scattering processes. The observed heirarchy of enhancements is shown to have important spectroscopic consequences.  相似文献   

3.
Low-energy theorems for elastic photon scattering (nuclear Compton scattering) from a nucleus of arbitrary spin are derived in the nonrelativistic approximation through terms quadratic in the photon frequency. The same derivation is made for the special case of 0+ → 0+ nuclear excitation by inelastic photon scattering (nuclear Raman scattering). Use is made of the general principle of gauge invariance, which bypasses the need to specify the form of the current operator explicitly. A general discussion of the contribution of mesonic exchanges is made and their effect is isolated. The center-of-mass correction to the nuclear diamagnetic susceptibility is calculated. The 0+ → 0+ two-photon decay amplitude is obtained from the nuclear Raman amplitude and the transition rate is calculated.  相似文献   

4.
A novel sample environment enabling optical pump – nuclear resonance probe experiments has been installed at the beamline P01, Petra III, DESY Hamburg. This set-up has been used to investigate optically induced spin state changes of spin crossover (SCO) complexes by nuclear resonant scattering immediately after excitation by an optical laser pulse. Here, we report the technical details as well as first results of the experiments performed at 290 K and 80 K on the SCO complexes [Fe (NH2trz)3]Cl2 and [Fe(PM-BiA)2(NCS)2], respectively. The 57Fe-enriched SCO complexes were excited by a 531 nm laser with a pulse length <?100 ps. Evaluation of the nuclear forward scattering data clearly indicate the presence of high spin (HS) states when the complexes are excited by laser pulses and a pure low spin (LS) state in the absence of any laser pulse. Furthermore, the dependence of the optically excited HS-fraction has been determined as a function of the average optical power.  相似文献   

5.
In order to carry out orientation dependent nuclear resonance scattering (NRS) experiments on small single crystals of e.g. iron proteins and/or chemical complexes but also on surfaces and other micrometer-sized samples a 2-circle goniometer including sample positioning optics has been installed at beamline P01, PETRA III, DESY, Hamburg. This sample environment is now available for all users of this beamline. Sample cooling is performed with a cryogenic gas stream which allows NRS measurements in the temperature range from 80 up to 400 K. In a first test this new sample environment has been used in order to investigate the orientation dependence of the nuclear inelastic scattering (NIS) signature of (i) a dinuclear iron(II) spin crossover (SCO) system and (ii) a hydrogen peroxide treated metmyoglobin single crystal.  相似文献   

6.
Within the framework of the nonadiabatic approach developed in the preceding paper, the resonance scattering, resonance Raman scattering, and resonance fluorescence are studied in detail for diatomic and triatomic molecules, and polyatomic symmetric and antisymmetric top molecules, which interact with the field of short-wavelength radiation with a wavelength λ ≥ Å and an intensity up to 1014 W/cm2. The coherent excitations of high-lying Rydberg and autoionizing states are taken into account. Analytical expressions for calculating the tensors and cross sections of the above processes are derived.  相似文献   

7.
8.
Abstract

Resonant enhancement of the Raman scattering cross section in II - IV semiconductors has recently received much attention both theoretically and experimentally. All existing theories anticipate a monotonic increase in the scattering intensities when the scattering radiation energy approaches the direct-energy gap. Contrary to them in an early Raman study of CdS1 a cancellation of scattering efficiencies for the two TO modes prior to the onset of the resonance was pointed out. In a latter work on pure CdS Damen et al.2 found even a more pronounced “antiresonance” behavior of the nonpolar E2 phonon at 41 cm?1. Thus, this striking feature seems to be rather common for the Raman active modes in CdS for which no electrooptic contribution to the scattering amplitude exists. The experimental data were qualitatively explained by assuming a destructive addition between nonresonant and the weaker resonant terms in LoudoN′s expression for the first-order Raman tensor3. Consequently the cancellation energy difference /EG - hwL/ depends on the ratio of the resonant term to the nonresonant terms.  相似文献   

9.
Differential cross sections for elastic and inelastic Raman scattering from the deformed heavy nuclei 159Tb, 165Ho and 237Np were measured at five energies between 8.5 and 11.4 MeV. Angular distributions at four angles between 90° and 140° for both elastic and inelastic scattering at 9.0 and 11.4 MeV were also measured. The monoenergetic photons were obtained from thermal neutron capture in Ni and Cr. All the angular distributions and the elastic and Raman scattering at the higher energies are in good overall agreement with theoretical predictions. The theory is based on a modified simple rotator model of the giant dipole resonance in which the effect of Delbrück scattering was included. A trend of both the elastic and Raman scattering at lower energies to be stronger than expected are suggested by the data. However, the ratio between the Raman and elastic scattering seem to be in good agreement with theory throughout the whole energy range. This shows that there is no need to introduce a direct nonresonant component to the imaginary part of the elastic scattering amplitude to explain the experimental data.  相似文献   

10.
Franz  H.  Asthalter  T.  Dommach  M.  Ehnes  A.  Messel  K.  Sergueev  I. 《Hyperfine Interactions》2002,141(1-4):131-134
The present status of the new nuclear resonance beamline PETRA 1 at HASYLAB, DESY, Hamburg is described. Besides an overview of the experimental setup some examples of recent experiments are given. Those cover the main applications, i.e., inelastic scattering from iron alloys and quasielastic scattering from glass-forming liquids. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
A new formalism is developed for studying pion-nucleus scattering in a model which takes into account the dynamics of the (3, 3) pion-nucleon resonance, or Δ isobar. This treatment is used to calculate π+ elastic scattering from 16O, 40Ca, 48Ca and 208Pb at energies from 114 to 240 MeV. Some results for π? elastic scattering are also given. From fits to π+ scattering data it is found that the Δ-nucleus interaction is well described by a spherical local complex potential proportional to the nuclear density. The central strength of this potential depends on energy but not on nuclear mass number. Some difficulties in determining the parameters of this potential from elastic scattering are discussed.  相似文献   

12.
Differential cross sections for elastic and Raman scattering of photons from 232Th and 238U targets were measured. Eight photon energies in the range 7.9–11.4 MeV were used and were obtained from thermal neutron capture in Fe, Cr, Cu and Ni. The angular distribution of the elastic and Raman scattered radiation from 232Th was measured. The results are compared with calculations of the simple rotator model and the dynamical collective model of the giant dipole resonance after incorporating the effect of Delbruck scattering.  相似文献   

13.
Resonance enhancement of one‐phonon, two‐phonon, and two‐magnon Raman scattering in a general, exactly solvable, multiband model is explained in a way that is in accordance with the general analytical properties of the total optical conductivity tensor. Using this approach, the charge‐transfer limit of the Emery three‐band model is examined to explain resonance enhancement of the two‐magnon Raman spectra of high‐Tc cuprates, which is found in experiments to be of 3 orders of magnitude. While previous Raman and optical conductivity analyzes of the cuprates, based on the single‐band Hubbard model, are found to be consistent with the picture where one hole per one CuO2 unit is localized on the Cu ion, the present three‐band approach allows the study of the opposite, strong copper‐oxygen hybridization limit, which is found to be in agreement with the results of nuclear magnetic resonance (NMR) and one‐phonon Raman scattering experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The resonance Raman scattering phenomenon via the predissociated state is described in the four crossing terms A-(1, 2)-B model when terms 1 and 2 strongly interact. The Green's function closed representation for the coupled intermediate electronic terms 1 and 2 is obtained. The transition amplitude I A-(1, 2)-B is found in the WKB approximation. The resonance Raman scattering via the predissociated 3ΠOu + state of the interhalogen molecules is treated in detail.  相似文献   

15.
Non‐degenerate second‐order scattering due to interaction of infrared and ultraviolet pulses is observed in picosecond infrared‐pump/anti‐Stokes Raman‐probe experiments under electronic resonance conditions. We detected resonance hyper‐Rayleigh scattering at the sum frequency of the pulses as well as the corresponding frequency‐down‐shifted resonance hyper‐Raman lines. Nearly coinciding resonance hyper‐Raman and one‐photon resonance Raman spectra indicate conditions of A‐term resonance Raman scattering. Second‐order scattering is distinguished from transient anti‐Stokes Raman scattering of v = 1 to v = 0 transitions and v = 1 to v′ = 1 combination transitions by taking into account their different spectral and temporal behaviour. Separating these processes is essential for a proper analysis of transient vibrational populations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Temporal Raman scattering measurements with 488, 532 and 632 nm excitation wavelengths and normal Raman studies by varying the power (from 30 W/cm2 to 2 MW/cm2) at 488 nm were performed on silver oxide thin films prepared by pulsed‐laser deposition. Initially, silver oxide Raman spectra were observed with all three excitation wavelengths. With further increase in time and power, silver oxide photodissociated into silver nanostructures. High‐intensity spectral lines were observed at 1336 ± 25 and 1596 ± 10 cm−1 with 488 nm excitation. No spectral features were observed with 633 nm excitation. Surface‐enhanced resonance Raman scattering theory is used to explain the complex behavior in the intensity of the 1336/1596 cm−1 lines with varying power of 488 nm excitation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The mutual effect of atomic groups in acid chlorides of threeand four-coordination phosphorus was investigated by the nuclear quadrupole resonance of Cl35 (NQR Cl35) and Raman spectroscopy methods. On the basis of the NQR data it is suggested that in the ground state the interaction of unshared pairs of chlorine with the d orbitals of phosphorus is displayed weakly and the interaction of the indicated atoms is accomplished predominantly by an inductive mechanism. The integral intensities of the Raman lines of vibrations of the P-Cl and P=Cl bonds were measured. The Raman scattering data and the results of quantummechanical calculations by the molecular orbital method indicate some additional multiplicity of the P-Cl bond.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 75–80, December, 1972.The authors thank V. T. Aleksanyan and G. Kuz'yants for help in measuring the depolarization ratio.  相似文献   

18.
Total scattering from nanocrystalline materials recorded on the Australian Synchrotron powder diffraction beamline has been analysed to produce atomic pair distribution functions (PDFs) for structural analysis. The capability of this beamline, which uses the massively parallel Mythen II detector, has been quantified with respect to PDF structure analysis. Data were recorded to a wavevector magnitude, Q, of 20.5 Å?1, with successful PDFs obtained for counting times as short as 10 s for crystalline LaB6 and 180 s for nanocrystalline (47 Å) anatase. This paper describes the aspects of a PDF experiment that are crucial to its success, with reference to the outcomes of analysis of data collected from nanocrystalline TiO2 and microcrystalline LaB6 and IrO2.  相似文献   

19.
Abstract: The relation between Raman scattering, resonance Raman scattering, and absorption is reviewed to determine to what extent quantitative analysis can be applied in resonance Raman spectroscopy. In addition, it is demonstrated experimentally that normal Raman spectra can be dramatically inhibited by absorption and resonance Raman effects. Raman spectra of toluene and heptane mixtures—with progressively increasing concentrations of heptane—were measured using 229-nm laser excitation. The results show that the characteristic band intensities are not directly proportional to the relative concentrations of the compounds and deviate due to absorption resonance effects. An approximated mathematical model is developed to demonstrate that the intensities of the normal Raman scattering bands are suppressed. An inhibition coefficient Ki is introduced to describe the situation and determine the penetration depth. Most remarkably, it is shown that the intensity of the resonance Raman scattering bands can be constant even when the concentration ratios differ substantially in the sampled mixtures.  相似文献   

20.
Optical nutation at the Raman-active transition 6P 1/2−6P 3/2 of thallium atoms (ω R /2πc=7793 cm −1) under resonant Raman excitation by a biharmonic picosecond pulsed field, giving rise to substantial motion of the population, is detected. Optical nutation appears as an oscillatory behavior of the energy of the anti-Stokes scattering of probe pulses, which follow with a fixed delay, as a function of the product of the energies of the excitation pulses. As a result of the dynamic Stark effect, which decreases the frequency of the transition under study, resonance excitation conditions are satisfied for negative initial detunings of the Raman excitation frequency from resonance. The Raman scattering cross section for the transition under study is estimated by comparing the experimental data with the calculations. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 1, 7–12 (10 July 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号