首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A water splitting photoelectrochemical (PEC) cell can convert solar energy to hydrogen fuels directly. The challenges for practical application are to fabricate photoelectrodes with high efficiency, good durability and low cost. In this review, we focus on recent progress of some promising photoelectrode materials, including BiVO44, αα-Fe2O3, Ta3N5 photoanodes and Cu2ZnSnS4 photocathodes. Several new strategies to enhance the performance of a PEC cell, such as surface exfoliation, suppressing back reaction and loading dual-layer catalysts, are discussed.  相似文献   

3.
This paper proposes a new node centrality measurement in a weighted network, the communication centrality, which is inspired by Hirsch’s hh-index. We investigated the properties of the communication centrality, and proved that the distribution of the communication centrality has the power-law upper tail in weighted scale-free networks. Relevant measures for node and network are discussed as extensions. A case study of a scientific collaboration network indicates that the communication centrality is different from other common centrality measures and other hh-type indexes. Communication centrality displays moderate correlation with other indexes, and contains a well-balanced mix of other centrality measures and cannot be replaced by any of them.  相似文献   

4.
Based on ab initio   electronic structure calculations by self-interaction-corrected local-density-approximation (SIC-LDA) with the Korringa–Kohn–Rostoker coherent potential approximation (KKR-CPA), we propose a materials design for high efficiency photovoltaic solar cells (PVSCs). It is shown that (i) the concentration dependence of the mixing energy of CuIn1−xGaxSe2CuIn1xGaxSe2 shows upward convexity, thus this system favors phase separation. Due to the type II band alignment between CuInSe2CuInSe2 and CuGaSe2CuGaSe2, efficient electron–hole separation is realized in decomposed phase of this system. (ii) CuIn1−xZn0.5xSn0.5xSe2CuIn1xZn0.5xSn0.5xSe2 has a direct band gap and no impurity state appears in the gap. Therefore, cost reduction is possible by using Zn and Sn instead of In. (iii) n-type CuAl1−xSnxS2CuAl1xSnxS2 and p-type Cu1−xVCuxAlS2Cu1xVCuxAlS2 have negative activation energy for doped impurities and are expected to be low-resistive transparent conducting sulfides, which should be useful for CuInSe2CuInSe2-based PVSCs.  相似文献   

5.
We show that a quantized Berry phase in Bloch momentum space can serve as a topological order parameter to the quantum phases of a gapped spin chain system with time-reversal invariance. Specifically, we study this approach analytically in a class of XY spin-1/2 chain with multiple sites interactions in a transverse field. In order to derive a proper definition of the Berry curvature in a two-dimensional parameter space, we performed a local gauge transformation to the spin chain system by a twist operator, which endows the Hamiltonian of the system with the topology of a torus T2T2 without changing its energy spectrum. We show that a topological Z2Z2 order parameter can be obtained as a quantized Berry phase by a loop integral of the Berry gauge potential along quarter of the Brillouin zone, which determines the zero-temperature phase diagram of the system.  相似文献   

6.
7.
8.
An overview of wavefunction-based correlation methods generalised for the application to solids is presented. Those methods based on a preceding Hartree–Fock treatment explicitly calculate the many-body wavefunction in contrast to the density-functional theory which relies on the ground-state density of the system. This review focus on the so-called method of increments where the correlation energy of the solid is expanded in terms of localised orbitals or of a group of localised orbitals. The method of increments is applied to a great variety of materials, from covalent semiconductors to ionic insulators, from large band-gap materials like diamond to the half-metal αα-tin, from large molecules like fullerenes over polymers, graphite to three-dimensional solids. Rare-gas crystals where the binding is van der Waals like are treated as well as solid mercury, where the metallic binding is entirely due to correlation. Strongly correlated systems are examined and the correlation driven metal–insulator transition is described at an ab initio level.  相似文献   

9.
10.
Random tensor models for a generic complex tensor generalize matrix models in arbitrary dimensions and yield a theory of random geometries. They support a 1/N1/N expansion dominated by graphs of spherical topology. Their Schwinger Dyson equations, generalizing the loop equations of matrix models, translate into constraints satisfied by the partition function. The constraints have been shown, in the large N limit, to close a Lie algebra indexed by colored rooted D  -ary trees yielding a first generalization of the Virasoro algebra in arbitrary dimensions. In this paper we complete the Schwinger Dyson equations and the associated algebra at all orders in 1/N1/N. The full algebra of constraints is indexed by D-colored graphs, and the leading order D-ary tree algebra is a Lie subalgebra of the full constraints algebra.  相似文献   

11.
We study analytically the Ising model coupled to random lattices in dimension three and higher. The family of random lattices we use is generated by the large N limit of a colored tensor model generalizing the two-matrix model for Ising spins on random surfaces. We show that, in the continuum limit, the spin system does not exhibit a phase transition at finite temperature, in agreement with numerical investigations. Furthermore we outline a general method to study critical behavior in colored tensor models.  相似文献   

12.
In this paper we revisit the Bialynicki-Birula and Mycielski uncertainty principle and its cases of equality. This Shannon entropic version of the well-known Heisenberg uncertainty principle can be used when dealing with variables that admit no variance. In this paper, we extend this uncertainty principle to Rényi entropies. We recall that in both Shannon and Rényi cases, and for a given dimension nn, the only case of equality occurs for Gaussian random vectors. We show that as nn grows, however, the bound is also asymptotically attained in the cases of nn-dimensional Student-tt and Student-rr distributions. A complete analytical study is performed in a special case of a Student-tt distribution. We also show numerically that this effect exists for the particular case of a nn-dimensional Cauchy variable, whatever the Rényi entropy considered, extending the results of Abe and illustrating the analytical asymptotic study of the Student-tt case. In the Student-rr case, we show numerically that the same behavior occurs for uniformly distributed vectors. These particular cases and other ones investigated in this paper are interesting since they show that this asymptotic behavior cannot be considered as a “Gaussianization” of the vector when the dimension increases.  相似文献   

13.
The XXX Gaudin model with generic integrable open boundaries specified by the most general non-diagonal reflecting matrices is studied. Besides the inhomogeneous parameters, the associated Gaudin operators have six free parameters which break the U(1)U(1)-symmetry. With the help of the off-diagonal Bethe ansatz, we successfully obtained the eigenvalues of these Gaudin operators and the corresponding Bethe ansatz equations.  相似文献   

14.
15.
We investigate index theory in the context of Dirac operators coupled to superconnections. In particular, we prove a local index theorem for such operators, and for families of such operators. We investigate ηη-invariants and prove an APS theorem, and construct a geometric determinant line bundle for families of such operators, computing its curvature and holonomy in terms of familiar index theoretic quantities.  相似文献   

16.
This paper models the cc-axis thermal conductivity of thin graphite layers taking into account phonon confinement. A Debye model is used to calculate graphite cc-axis thermal conductivity, which is found to be 4 orders of magnitude smaller than in the graphite basal plane. This reduced thermal conductivity is promising for devices with improved thermoelectric figure of merit, ZTZT, and thermal conduction along graphite cc-axis. Results of graphite thermal conductivity in the basal plane are also presented and discussed. These calculations have been done for ideal graphite structures that are a few monolayers thick, free of defects, and free of boundary scattering processes. To achieve the low calculated values of thermal conductivity, it will be necessary to fabricate high-quality graphite structures; this will pose significant fabrication challenges.  相似文献   

17.
18.
There is growing evidence that the unconventional spatial inhomogeneities in the doped high-TcTc superconductors are accompanied by the pairing of electrons, subsequent phase transitions and condensation into coherent states. We show that such pairing states can be obtained from phase separation instabilities near level crossings. Conditions for coherent pairing instabilities are examined using exact diagonalization of Hubbard-like pyramid structures under variation of coupling and interaction strengths. We also evaluate the behavior of the energy charge gap in the vicinity of level crossings using a parametrization of coupling to the apical site to represent out-of-plane effects. These results provide a simple microscopic explanation of (correlation induced) supermodulation of the coherent pairing gap observed in scanning tunneling microscopy measurements at atomic scale in Bi2Sr2CaCu2O8 + δ.  相似文献   

19.
This paper illustrates the application of group theory to a quantum-mechanical three-dimensional quartic anharmonic oscillator with OhOh symmetry. It is shown that group theory predicts the degeneracy of the energy levels and facilitates the application of perturbation theory and the Rayleigh–Ritz variational method as well as the interpretation of the results in terms of the symmetry of the solutions. We show how to obtain suitable symmetry-adapted basis sets.  相似文献   

20.
In this paper, we give a general discussion on the calculation of the statistical distribution from a given operator relation of creation, annihilation, and number operators. Our result shows that as long as the relation between the number operator and the creation and annihilation operators can be expressed as ab=Λ(N)ab=Λ(N) or N=Λ−1(ab)N=Λ1(ab), where NN, aa, and bb denote the number, creation, and annihilation operators, i.e., NN is a function of quadratic product of the creation and annihilation operators, the corresponding statistical distribution is the Gentile distribution, a statistical distribution in which the maximum occupation number is an arbitrary integer. As examples, we discuss the statistical distributions corresponding to various operator relations. In particular, besides the Bose–Einstein and Fermi–Dirac cases, we discuss the statistical distributions for various schemes of intermediate statistics, especially various qq-deformation schemes. Our result shows that the statistical distributions corresponding to various qq-deformation schemes are various Gentile distributions with different maximum occupation numbers which are determined by the deformation parameter qq. This result shows that the results given in much literature on the qq-deformation distribution are inaccurate or incomplete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号