首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of ethylene has been studied on stoichiometric NiO(100) and on surfaces reduced to 40% of the stoichiometric oxygen content. The adsorption process was followed with XPS, Auger spectroscopy and LEED at substrate temperatures of 200 to 500 K and at ethylene pressure of 5 × 10?7 Torr. At 200 K, two distinct ethylene species are observed on stoichiometric NiO(100). The first species saturates at 0.02 ML after 200 L and is adsorbed molecularly, interacting with both nickel and oxygen sites. A condensed species then forms which does not saturate for exposures up to 2100 L. Both adsorb reversibly with all traces of carbon absent by 270 K. At 200–300 K, reduced NiO(100) also adsorbs two molecular ethylene species, although with a preference for nickel sites. However, the uptake of ethylene increases only slightly with surface reduction. Adsorption is no longer reversible for the reduced surface and increasing the substrate temperature causes fragmentation of the adsorbed ethylene with a concomitant reduction in lattice oxygen content.  相似文献   

2.
3.
4.
The low-energy spectrum of secondary electrons emitted from the NiO(100) face has been investigated. The origin of the main features, at 8 and 12 eV, is discussed on the basis of their dependence on the temperature and the primary energy.  相似文献   

5.
《Surface science》1995,325(3):L421-L427
We use thermal desorption spectroscopy to estimate the adsorption energy of CO on NiO(100) to be 7.0–8.8 kcal mol−1. NEXAFS is employed to determine the orientation of the CO axis. The molecule is oriented perpendicular to the NiO(100) surface. In the present case we have resorted to angle-resolved photoelectron spectroscopy (ARUPS) to find indications that the CO molecule interacts with the surface through its carbon lone pair. The experimental analysis is in agreement with theoretical predictions that CO is held to NiO(100) mainly via electrostatic multipolar forces.  相似文献   

6.
Photoemission yield spectroscopy (PYS) together with Auger electron spectroscopy (AES) have been used in an investigation of the electronic properties of the NiO(100) surface, thermally cleaned in ultrahigh vacuum (UHV). The work function and ionization energy were determined. The origin of the filled electronic states band localized below the Fermi level, EF, is briefly discussed.  相似文献   

7.
Dynamical calculations have been performed to determine the surface structure of NiO(100) from a comparison with experimental LEED data. As a preliminary to the structural determination an investigation was made of the effect of different assumptions in the construction of the muffin-tin potential. It was found that these were of secondary importance compared to the structural parameters thus giving us confidence in the final result which was that there is negligible rearrangement (<5% of the interlayer spacing) of the atoms at the NiO(100) surface.  相似文献   

8.
The reduction of single crystal NiO(100) under hydrogen has been followed by AES, XPS and LEED for the pressure range of 1.0 × 10?7 to 1.3 × 10?6 Torr and for substrate temperatures of 150–350°C. The kinetics of reduction are controlled both by the rate of removal of lattice oxide at the surface and by the diffusion of subsurface oxygen to the oxygen-depleted surface. The rate of oxygen removal is first-order in surface oxide concentration and in hydrogen pressure. An induction period precedes the reduction reaction and its length is postulated to be controlled by surface defect concentration. The stoichiometric and reduced lattice oxygen species appear to be chemically identical and give a single symmetric XPS peak at 529.4 eV. Nickel spectra indicate a shift in XPS binding energies from those expected of the oxide to those of nickel metal early in the reduction process, although LEED indicates the NiO(100) surface lattice to remain the stable structure for surface reduced to approximately 20% of the stoichiometric oxygen concentration. Ni(100) island formation is observed, with Ni 〈010〉 and 〈001〉 directions along the NiO 〈010〉 and 〈001〉, respectively, but only after the NiO surface is severely depleted in oxygen.  相似文献   

9.
Electron energy-loss spectroscopy of ~ 200 eV electrons has been applied to the study of the electronic states of clean NiO (100) surfaces. Initial attempt has been made on the identification of observed peaks, and they are attributed to the one-electronic transitions (O2-2p → Ni2+3d, 4s and 4p; Ni2+3d → 4p, 3p → 3d and 4s), and the collective excitations (bulk plasmons of O2-2p, Ni2+3d electrons, and coupled 2p and 3d electrons).  相似文献   

10.
P Fouquet  P.K Day  G Witte   《Surface science》1998,400(1-3):140-154
The scattering of metastable 23S He atoms (He*) from cleaved NiO(100) as well as from clean and CO-covered Cu(100) surfaces has been studied. For these varied surfaces, which were characterized in situ by ground state He atom scattering, only broad He* angular distributions without any diffraction peaks were observed. For metastable He atoms scattered from the clean Cu(100) surface a total survival probability of 1×10−6 was determined. For NiO(100) and the CO-covered Cu(100) surface values of about 1×10−5 were obtained. Time-of-flight spectra of the surviving He* atoms revealed a substantial energetic broadening which increases with the substrate temperature. This behaviour indicates a large well depth for the He*–surface interaction potential and is discussed in terms of an enhanced multiphonon excitation and/or trapping probability upon the scattering.  相似文献   

11.
The reaction of H2S with NiO(100) has been studied by polarization-dependent surface EXAFS. The results evidence reduction of the selvedge to form a Ni raft having S in four-fold sites with a S–Ni bond length of 2.21±0.02 Å. The Ni–Ni in-plane distance is 2.77±0.09 Å, representing a 6±4% contraction compared to that in NiO(100).  相似文献   

12.
The successive stages of the oxidation of Ni(100) have been investigated by angle-resolved uv photoemission. The adsorption spectra are very similar to that measured previously for the same surface saturated with sulphur. Results are interpreted using recent theoretical calculations. It is found that this interpretation can be extended to the other chalcogens adsorbed on Ni(100). When increasing oxygen exposures, photoemission spectra have shown a continuity of the electronic character in the oxidation process.  相似文献   

13.
The adsorption of hydrogen on the (100) plane of nickel at room temperature has been investigated using the technique of flash desorption spectroscopy. It is shown that no variation in the adsorption enthalpy of 23.1 kcal/mole occurs during the chemical cleaning of the surface by repeated oxidation and reduction. The number of adsorption sites does however increase to 3.3×1014/cm2 during this process. Determination of the partition functions of the adsorbed species and of the activated complex indicates that the hydrogen atoms are localised on specific adsorption sites but that greater liberty exists in the activated complex. Finally the experimental desorption spectra may be described using a model with a repulsive interaction of 400 cal/mole between nearest neighbours.  相似文献   

14.
15.
Multiple scattering LEED calculations have been performed for the intensities of the half-order features of the NiO(100) surface, assuming different exchange potentials on the different magnetic sublattices. Approximate methods have been tested on a model NaCl like structure, in which the different sublattices have opposite spin, and for which exact calculations can be performed. These techniques, thus validated, have been applied to the NiO(100) surface, and comparisons are made with the limited experimental data currently available.  相似文献   

16.
The orientation of magnetic moments at the (100) surface of antiferromagnetic NiO single crystals is studied by x-ray linear magnetic dichroism in photoemission microscopy. T domains are observed terminating at the surface, with domain boundaries running mostly along in-plane [10] directions. From the detailed polarization dependence we find that the magnetic surface structure of a cleaved crystal is bulk terminated. This is in contrast to sputtered surfaces, where magnetic moments lie within the surface plane, forming a magnetically relaxed structure. These findings are of importance for understanding the exchange bias phenomenon.  相似文献   

17.
运用广义梯度密度泛函理论(GGA-PW91)结合周期平板模型方法,研究了CO2分子分别在1×1×1和2×2×1CaO(100)超晶胞面最稳定位的吸附行为。结果表明:CaO(100)表面的Osurf原子为CO2分子的有效吸附位,能够和CO2分子形成稳定吸附键C-Osurf, 其吸附能为0.858 eV。在吸附前后C和Osurf原子的价电子组态分别由2s0.892p2.47和2s1.842p4.99变化为2s0.682p2.33和2s1.902p5.17,而且在CO2分子中的O2s原子与Surface层的Casub4s原子间存在相互作用。考察了多个CO2分子在2×2×1 CaO(100)表面吸附时存在分子间相互排斥作用,发现当四个CO2分子吸附到2×2×1CaO(100)超晶胞面时,排斥能为1.76 eV,不利于CO2分子的吸附。  相似文献   

18.
运用广义梯度密度泛函理论(GGA-PW91)结合周期平板模型方法,研究了CO2分子分别在1×1×1和2×2×1CaO(100)超晶胞面最稳定位的吸附行为。结果表明:CaO(100)表面的Osurf原子为CO2分子的有效吸附位,能够和CO2分子形成稳定吸附键C-Osurf, 其吸附能为0.858 eV。在吸附前后C和Osurf原子的价电子组态分别由2s0.892p2.47和2s1.842p4.99变化为2s0.682p2.33和2s1.902p5.17,而且在CO2分子中的O2s原子与Surface层的Casub4s原子间存在相互作用。考察了多个CO2分子在2×2×1 CaO(100)表面吸附时存在分子间相互排斥作用,发现当四个CO2分子吸附到2×2×1CaO(100)超晶胞面时,排斥能为1.76 eV,不利于CO2分子的吸附。  相似文献   

19.
20.
庄飞  唐景昌  何江平  汪雷 《物理学报》2000,49(3):570-576
用多重散射团簇(MSC)理论对CO/NiO(100)和NO/NiO(100)吸附系统的C1s近边X射线吸收精细结构(NEXAFS)和N1sNEXAFS谱进行了详细的计算和分析.理论计算表明CO/NiO(100)是弱物理吸附,CO分子与表面的多极静电相互作用很弱,σ共振不依赖C—O键长的变化,MSC方法分析表明,CO是以C原子朝下,吸附在衬底的Ni—O键桥上,可靠性因子计算显示C原子的吸附位置距Ni原子009nm,CO分子中C原子距衬底的吸附高度为031±001nm,CO分子倾斜角不大于25°.理论计算证实  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号