首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we investigate the formations and morphological stabilities of Co-silicide films using 1-8-nm thick Co layers sputter-deposited on silicon(100) substrates.These ultrathin Co-silicide films are formed via solid-state reaction of the deposited Co films with Si substrate at annealing temperatures from 450℃ to 850℃.For a Co layer with a thickness no larger than 1 nm,epitaxially aligned CoSi2 films readily grow on silicon(100) substrate and exhibit good morphological stabilities up to 600℃.For a Co layer thicker than 1 nm,polycrystalline CoSi and CoSi2 films are observed.The critical thickness below which epitaxially aligned CoSi2 film prevails is smaller than the reported critical thickness of the Ni layer for epitaxial alignment of NiSi2 on silicon(100) substrate.The larger lattice mismatch between the CoSi2 film and the silicon substrate is the root cause for the smaller critical thickness of the Co layer.  相似文献   

2.
The formation of the Co/Si(110)16 × 2 interface and its magnetic properties are studied by high-energy-resolution photoelectron spectroscopy using synchrotron radiation and magnetic linear dichroism in the photoemission of core electrons. It is shown that a cobalt coating less than 7 Å thick deposited on the silicon surface at room temperature results in the formation of an ultrathin (1.7 Å) interfacial cobalt silicide layer and a layer of silicon-cobalt solid solution. The ferromagnetic ordering of the interface is observed at an evaporation dose corresponding to 6–7 Å in which case a cobalt metal film begins to grow on the solid solution layer. During 300°C-annealing of the sample covered by a nanometer-thick cobalt layer, the metal film gradually disappears and four silicide phases arise: metastable ferromagnetic silicide Co3Si and three stable nonmagnetic silicides (Co2Si, CoSi, and CoSi2).  相似文献   

3.
The processes that occur in ultrathin (up to 1 nm) Fe and Co layers during deposition onto the Si(100)2 × 1 surface in various sequences and during annealing of the formed structures to a temperature of 400°C are studied. The elemental and chemical compositions of the films are analyzed by in situ high-resolution X-ray photoelectron spectroscopy using synchrotron radiation, and their magnetic properties are determined using the magnetic linear dichroism effect in the angular distribution of Fe 3p and Co 3p electrons. It is shown that, when iron is first deposited, the formed structure consists of the layers of FeSi, Fe3Si, Co-Si solid solution, and metallic cobalt with segregated silicon. The structure formed in the alternative case consists of the layers of CoSi, Co-Si solid solution, Co, Fe-Si solid solution, and Fe partly covered by silicon. All layers (apart from FeSi, CoSi) form general magnetic systems characterized by ferromagnetic ordering. Annealing of the structures at temperatures above 130dgC (for the Co/Fe/Si system) and ~200°C (for Fe/Co/Si) leads to the formation of nonmagnetic binary and ternary silicides (Fe x Co1 ? x Si, Fe x Co2 ? x Si).  相似文献   

4.
Highly resolved Co depth profiles have been obtained during the initial stages of Co growth on Si(100) at low temperature (-60 °C) by in situ high-resolution Rutherford backscattering spectrometry. We found extensive Co in-diffusion in the submonolayer growth regime even at this low temperature, besides Co on top of the Si surface. The amount of diffused-in Co is larger than the amount of Co at the Si surface. Every second Si layer is depleted of Co, starting at the Si surface, thus giving rise to compositional oscillations of Co in the Si(100) lattice. At this low temperature the growth of metallic Co on the Si surface is observed at 0.1 ML of deposited Co, which continues for higher coverages. At much higher coverage (5.93 ML of Co) almost exclusively low Co content silicides are formed at the Co/Si interface. The data presented here are compared with previous room temperature deposition data and are different in several aspects. PACS 68.35.-p; 68.55.ag; 75.47.-m; 82.80.Yc  相似文献   

5.
Effect of oxygen exposure on the magnetic properties of ultrathin Co/Si(1 1 1)-7×7 films have been studied. In ultrahigh vacuum environment, Auger electron spectroscopy (AES) analysis shows that no oxygen adsorption occurs on Si(1 1 1)-7×7 surface and Co-Si compound interfaces. As the thickness of Co films increases above 5 monolayers (ML), pure cobalt islands form on the surface and the amount of oxygen on the surface layers increases with increasing the oxygen exposure time. From the results of slight chemical shift and depth profiling measurements, the oxygen is weakly adsorbed on the topmost layer of 15 ML Co/Si(1 1 1) films. The adsorbed oxygen influences the electronic density of states of Co and leads to the changes of the magnetic properties. The appearance of the O/Co interface could modify the stress anisotropy, as a result, the coercivity of ultrathin Co/Si(1 1 1) films are enhanced. As an example for 15 ML Co/Si(1 1 1), the coercivity increases from 140 to 360 Oe with 5000 Langmuir of oxygen exposure.  相似文献   

6.
7.
In situ X-ray photoelectron spectroscopy (XPS) and ex situ atomic force microscopy (AFM) were used to study the growth of thin cobalt films at room temperature (RT) on both clean and H-terminated Si(0 0 1) and Si(1 1 1) surfaces. The growth proceeds by first forming an initial CoSi2-like phase at the growth front of the Si substrate. With increasing Co coverage the interfacial layer composition becomes richer in Co and eventually a metallic Co film is formed on top. Hydrogen termination of the Si surface did not suppress the reaction of Co and Si. A pseudo-layer-by-layer growth mode is proposed to describe the growth of Co on H-terminated Si surfaces, while closed-packed small island growth occurs on clean Si surfaces. The difference in growth mode can be attributed to the increase in the surface mobility of Co adatoms in the presence of hydrogen.  相似文献   

8.
Qualitative changes are observed in the character of the surface electronic structure accompanying the adsorption of potassium on a Si(111) 7×7 surface. The metallic conductivity of the Si(111)7×7 surface is destroyed at the very early stages of adsorption. A new band induced by the adsorption of potassium is observed below the Fermi level. It is found that the K/Si(111)7×7 interface is semiconducting right up to saturating coverage. A surface transition from an insulating into a metallic state, accompanied by pinning of the Fermi level, is observed in the region of saturating coverage. Metallic conductivity arises in the adsorbed potassium layer as a result of the development of an induced surface band at the Fermi level. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 1, 27–30 (10 July 1997)  相似文献   

9.
The temperature dependences of interfacial exchange coupling in Co/semiconductor (SM)/Fe trilayers (SM≡Si or Ge) with different spacer thicknesses are investigated. Only one step is found in the third (not in the first) quadrant of the hysteresis loop of the trilayers with different SM thicknesses, which is ascribed to a larger interfacial coupling strength of Co/CoGe (or Co/CoSi) than of Fe/FeGe (or Fe/FeSi). Furthermore, in comparison with Co/Ge/Fe, a smaller exchange bias field HE and no clear step are observed in Co/Si/Fe, which may originate from the weaker interfacial coupling in this trilayer. The variation of coercivity HC with spacer thickness at low temperatures in Co/Ge/Fe is different from that in Co/Si/Fe, indicating again the important effect of the SM layer in the trilayers.  相似文献   

10.
In this paper we investigate the formations and morphological stabilities of Co-silicide fihns using 1-8-nm thick Co layers sputter-deposited on silicon (100) substrates. These ultrathin Co-silicide films are formed via solid-state reaction of the deposited Co films with Si substrate at annealing temperatures from 450 ℃ to 850 ℃. For a Co layer with a thickness no larger than i nm, epitaxially aligned CoSi2 films readily grow on silicon (100) substrate and exhibit good morphological stabilities up to 600 ℃. For a Co layer thicker than 1 nm, polycrystalline CoSi and CoSi2 films are observed. The critical thickness below which epitaxially aligned CoSi2 film prevails is smaller than the reported critical thickness of the Ni layer for epitaxial alignment of NiSi2 on silicon (100) substrate. The larger lattice mismatch between the CoSi2 film and the silicon substrate is the root cause for the smaller critical thickness of the Co layer.  相似文献   

11.
T. Schalow  H.-J. Freund 《Surface science》2006,600(12):2528-2542
We have quantitatively studied the interaction between oxygen and an Fe3O4-supported Pd model catalyst by molecular beam (MB) methods, time resolved IR reflection absorption spectroscopy (TR-IRAS) and photoelectron spectroscopy (PES) using synchrotron radiation. The well-shaped Pd particles were prepared in situ by metal evaporation and growth under ultrahigh vacuum (UHV) conditions on a well-ordered Fe3O4 film on Pt(1 1 1).It is found that for oxidation temperatures up to 450 K oxygen predominantly chemisorbs on metallic Pd whereas at 500 K and above (∼10−6 mbar effective oxygen pressure) large amounts of Pd oxide are formed. These Pd oxide species preferentially form a thin layer at the particle/support interface, stabilized by the iron-oxide support. Their formation and reduction is fully reversible. Upon decomposition, oxygen is released which migrates back onto the metallic part of the Pd surface. In consequence, the Pd interface oxide layer acts as an oxygen reservoir, the capacity of which by far exceeds the amount of chemisorbed oxygen on the metallic surface.Additionally, Pd surface oxides can also be formed at temperatures above 500 K. The extent of surface oxide formation critically depends on the oxidation temperature. This effect is addressed to different onset temperatures for oxidation of the particle facets and sites. It is shown that the presence of Pd surface oxides sensitively modifies the adsorption and reaction properties of the model catalyst, i.e. by lowering the CO adsorption energy and CO oxidation probability. Still, a complete reduction of the Pd surface oxides can be obtained by extended CO exposure, fully reestablishing the metallic Pd surface.  相似文献   

12.
J.S. Tsay  Y.S. Chen 《Surface science》2006,600(18):3555-3559
Adsorption of oxygen on ultrathin Co/Ir(1 1 1) films thinner than 4 monolayers in an ultrahigh vacuum environment was studied. For oxygen adsorption on cobalt films, the complex adsorption kinetics emerges partly due to the incorporation of oxygen. The amount of oxygen adsorbed at the surfaces is higher than that incorporated into the film as revealed from sputter profiling measurements. At room temperature the CoO layer exhibits paramagnetism and could not contribute to the remanent Kerr intensity. As oxygen exposure increases, the reduction of the Kerr intensity is due to the reduction of the effective layer for the magnetic measurements. Compared with oxygen saturated cobalt films, the concentration of adsorbed oxygen per Co atom shows an oscillatory behavior. A compositional anomaly of a great amount of adsorbed oxygen in submonolayer Co coverage occurs because of the maximized number of adsorption and incorporation sites for oxygen on the surface. A larger charge transfer between Co and oxygen was observed for thinner Co overlayers as revealed from the larger chemical shifts of Auger lines.  相似文献   

13.
14.
Recent experiments on the silicon terminated (3 x 2)-SiC(100) surface indicated an unexpected metallic character upon hydrogen adsorption. This effect was attributed to the bonding of hydrogen to a row of Si atoms and to the stabilization of a neighboring dangling bond row. Here, on the basis of density-functional calculations, we show that multiple-layer adsorption of H at the reconstructed surface is compatible with a different geometry: in addition to saturating the topmost Si dangling bonds, H atoms are adsorbed at rather unusual sites, i.e., stable bridge positions above third-layer Si dimers. The results thus suggest an alternative interpretation for the electronic structure of the metallic surface.  相似文献   

15.
Formation of the Si/Co interface and its magnetic properties have been studied by high-resolution photoelectron spectroscopy with synchrotron radiation. The experiments have been performed in situ in superhigh vacuum (5 × 10?10 Torr) with coating thicknesses up to 2 nm. It has been found that, in the initial stage of silicon deposition on the surface of polycrystalline cobalt maintained at room temperature, ultrathin layers of the Co3Si, Co2Si, CoSi, and CoSi2 silicides are formed. The three last phases are nonmagnetic, and their formation gives rise to fast decay of magnetic linear dichroism in photoemission of Co 3p electrons. At deposition doses in excess of ~0.4 nm Si, a film of amorphous silicon grows on the sample surface. It has been established that the Si/Co interphase boundary is stable at temperatures up to ~250°C and that further heating of the sample brings about escape of amorphous silicon from the sample surface and initiates processes involving silicide formation.  相似文献   

16.
The adsorption and dissociation of water monomer and dimer on stepped Co(0001) surface were studied by means of first-principles calculations. Present results indicate that the adsorption strength of water is greatly enhanced by the presence of step, while the activity of water monomer dissociation does not exhibit a noticeable improvement. Nevertheless, water dimer partial dissociation on stepped Co(0001) is more active than on flat Co(0001), and the promotion of oxygen atom on O–H bond cleavage of H2O is more prominent on stepped surface than on flat Co(0001). The findings reveal the importance of low coordinated surface atoms on metallic catalysts and the vital role of surface rippling on water dissociation. Together with previous reports, the activity of water dissociation on cobalt-based catalytic surfaces depends dominantly on O-containing species like oxygen atom, H2O or hydroxyl.  相似文献   

17.
We have investigated the electronic structure and the magnetic properties of Co–Si alloy clusters using ab initio spin-polarized density functional calculations. The possible CoSi2, CoSi, and Co2Si phase clusters with oblique hexagon prism, icosahedron, and cuboctahedron structures are introduced. The CoSi phase cluster with icosahedron structure has the largest binding energy and amount of charge transfer. We found that HOMO-LUMO gap, magnetic moment, and spin polarization for the Co–Si alloy clusters with icosahedron structure increase with Co concentration. The Si atoms in the CoSi phase with icosahedron structure have negative magnetic moment.  相似文献   

18.
This paper is devoted to the study of the morphology, growth, electronic structure, and stability of ultrathin (0.03–3 nm) Co and Fe films on the Si(111) and Si(100) surfaces using Auger-electron spectroscopy, electron-energy loss spectrometry, low-energy electron diffraction, and atomic-force microscopy. It is shown that layer-by-layer growth of the metal with the formation of the film nanophase and the segregation of a submonolayer amount of Si on the film’s nanophase surface occurs during the process of layer-by layer growth of Co and Fe on Si(111)-7 × 7 and Si(100)-2 × 1 at room temperature after the growth of two-dimensional metal phases (the surface phase, the monolayer, and two metal monolayers). After these stages, the formation and growth of the bulk’s metal phase with the dissolution of silicon segregated before occur. It is shown that the upper layers of Si adjoining the surface phase, the monolayer, and two Co and Fe monolayers have respectively three different densities of the electron plasma that are higher than the density of the electron plasma in the volume of the silicon substrate. The nonmonotonous character of the morphological and chemical stability of Fe films with quantum-size thicknesses on Si(100) is discovered. After annealing, the film is first smooth, then it is nonuniform across its thickness; afterwards it is again smooth and then nonuniform across its thickness. In this case, the metal phase, different Fe silicides, and the bulk’s metal phase form successively in Fe films on Si(100) after annealing.  相似文献   

19.
Using density functional theory, we systematically investigate the adsorption geometries and electrical properties of (3,3) carbon nanotube (CNT) integrated on hydrogen-terminated Si(001):1?×?1 surface. Prior to adsorption of the CNT, the surface is patterned in two different ways by desorbing selective hydrogen atoms from the surface. The (3,3) CNT which is metallic in nature becomes semiconducting with a band gap around the fermi level when it is supported on patterned hydrogen-terminated Si(001):1?×?1 surface. However, the band gap is reduced when a transverse electric field is applied, allowing the (3,3) CNT on the patterned hydrogen-terminated Si(001):1?×?1 to become metallic at a critical field strength. The tuning of electrical properties of the (3,3) CNT integrated with Si surface may have potential technological applications.  相似文献   

20.
We have succeeded in detecting metallic transport in a monatomic layer of In on an Si(111) surface, Si(111)-sqrt[7]×sqrt[3]-In surface reconstruction, using the micro-four-point probe method. The In layer exhibited conductivity higher than the minimum metallic conductivity (the Ioffe-Regel criterion) and kept the metallic temperature dependence of resistivity down to 10?K. This is the first example of a monatomic layer, with the exception of graphene, showing metallic transport without carrier localization at cryogenic temperatures. By introducing defects on this surface, a metal-insulator transition occurred due to Anderson localization, showing hopping conduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号