首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For inviscid steady flow problems where the enthalpy is constant at steady state, it has been proposed by Jameson, Schmidt, and Turkel to use the difference between the local enthalpy and the steady state enthalpy as a driving term to accelerate convergence of iterative schemes. This idea is analyzed here, both on the level of the partial differential equation and on the level of a particular finite difference scheme. It is shown that for the two-dimensional unsteady Euler equations, a hyperbolic system with eigenvalues on the imaginary axis, there is no enthalpy damping strategy which can move all the eigenvalues into the open left half plane. For the numerical scheme, however, the analysis shows and examples verify that enthalpy damping can be effective in accelerating convergence to steady state.  相似文献   

2.
3.
We suggest an original scheme and an algorithm for the numerical solution of the Euler equations of gas dynamics. The construction of the scheme is based on the mass, momentum, and energy conservation laws. The flux computation is carried out by summation of elementary fluxes formed by small-amplitude running waves that satisfy the linearized equations of gas dynamics. The scheme contains no artificial regularizers, has second-order accuracy on smooth solutions, and is quasimonotone in a neighborhood of the discontinuities. Examples of one- and two-dimensional computations are given.  相似文献   

4.
A generalization of the CABARET finite difference scheme is proposed for linearized one-dimensional Euler equations based on the characteristic decomposition into local Riemann invariants. The new method is compared with several central finite difference schemes that are widely used in computational aeroacoustics. Numerical results for the propagation of an acoustic wave in a homogeneous field and the refraction of this wave through a contact discontinuity obtained on a strongly nonuniform grid are presented.  相似文献   

5.
Time efficiency is one of the more critical concerns in computational fluid dynamics simulations of industrial applications. Extensive research has been conducted to improve the underlying numerical schemes to achieve time process reduction. Within this context, this paper presents a new time discretization method based on the Adomian decomposition technique for Euler equations. The obtained scheme is time-order adaptive; the order is automatically adjusted at each time step and over the space domain, leading to significant processing time reduction. The scheme is formulated in an appropriate recursive formula, and its efficiency is demonstrated through numerical tests by comparison to exact solutions and the popular Runge–Kutta-discontinuous Galerkin method.  相似文献   

6.
7.
Summary We study the approximation problem ofE f(X T ) byE f(X T n ), where (X t ) is the solution of a stochastic differential equation, (X T n ) is defined by the Euler discretization scheme with stepT/n, andf is a given function. For smoothf's, Talay and Tubaro have shown that the errorE f(X T ) –f(X T n ) can be expanded in powers of 1/n, which permits to construct Romberg extrapolation precedures to accelerate the convergence rate. Here, we prove that the expansion exists also whenf is only supposed measurable and bounded, under an additional nondegeneracy condition of Hörmander type for the infinitesimal generator of (X t ): to obtain this result, we use the stochastic variations calculus. In the second part of this work, we will consider the density of the law ofX T n and compare it to the density of the law ofX T .  相似文献   

8.
In the present work, we consider the numerical approximation of pressureless gas dynamics in one and two spatial dimensions. Two particular phenomena are of special interest for us, namely δ‐shocks and vacuum states. A relaxation scheme is developed which reliably captures these phenomena. In one space dimension, we prove the validity of several stability criteria, i.e., we show that a maximum principle as well as the TVD property for the discrete velocity component and the validity of discrete entropy inequalities hold. Several numerical tests considering not only the developed first‐order scheme but also a classical MUSCL‐type second‐order extension confirm the reliability and robustness of the relaxation approach. The article extends previous results on the topic: the stability conditions for relaxation methods for the pressureless case are refined, useful properties for the time stepping procedure are established, and two‐dimensional numerical results are presented. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

9.
10.
The multigrid method based on multi-stage Jacobi relaxation, earlier developed by the authors for structured grid calculations with Euler equations, is extended to unstructured grid applications. The meshes are generated with Delaunay triangulation algorithms and are adapted to the flow solution.  相似文献   

11.
** Email: dlevy{at}math.stanford.edu We derive a second-order, semi-discrete central-upwind schemefor the incompressible 2D Euler equations in the vorticity formulation.The reconstructed velocity field preserves an exact discreteincompressibility relation. We state a local maximum principlefor a fully discrete version of the scheme and prove it usinga convexity argument. We then show how similar convexity argumentscan be used to prove that the scheme maps certain Orlicz spacesinto themselves. The consequences of this result on the convergenceof the scheme are discussed. Numerical simulations support theexpected properties of the scheme.  相似文献   

12.
A compactness framework is formulated for the incompressible limit of approximate solutions with weak uniform bounds with respect to the adiabatic exponent for the steady Euler equations for compressible fluids in any dimension. One of our main observations is that the compactness can be achieved by using only natural weak estimates for the mass conservation and the vorticity. Another observation is that the incompressibility of the limit for the homentropic Euler flow is directly from the continuity equation, while the incompressibility of the limit for the full Euler flow is from a combination of all the Euler equations. As direct applications of the compactness framework, we establish two incompressible limit theorems for multidimensional steady Euler flows through infinitely long nozzles, which lead to two new existence theorems for the corresponding problems for multidimensional steady incompressible Euler equations.  相似文献   

13.
We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the solutions of the Riemann problem in the flow direction, consisting of two shocks, one vortex sheet, and one entropy wave, which is one of the core multi-wave configurations for the two-dimensional Euler equations. It is proved that such steady four-wave configurations in supersonic flow are stable in structure globally, even under the BV perturbation of the incoming flow in the flow direction. In order to achieve this, we first formulate the problem as the Cauchy problem (initial value problem) in the flow direction, and then develop a modified Glimm difference scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves, but also between the strong vortex sheet/entropy wave and weak waves. The key feature of the Euler equations is that the reflection coefficient is always less than $1$, when a weak wave of different family interacts with the strong vortex sheet/entropy wave or the shock wave, which is crucial to guarantee that the Glimm functional is decreasing. Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution, close to the background solution of steady four-wave configuration.  相似文献   

14.
This paper presents a fixed stepsize Euler scheme for linear impulsive delay differential equations and considers its convergence. We propose a method to take the partition nodes for the Euler scheme. Employing the induction and the technique of inequality, we obtain the order of convergence for Euler scheme. An example is given to illustrate the efficiency of our result.  相似文献   

15.
We study a random Euler scheme for the approximation of Carathéodory differential equations and give a precise error analysis. In particular, we show that under weak assumptions, this approximation scheme obtains the same rate of convergence as the classical Monte–Carlo method for integration problems.  相似文献   

16.
Résumé Une solution particulière des equations d'équilibrium thermoélastique est derivée d'une fonction potentielle. Cette solution est combinée avec les solutions connues des equations élastostatiques et appliquée à la solution d'une classe particulière de problèmes aux limites.  相似文献   

17.
18.
For a stochastic differential equation with non-Lipschitz coefficients, we construct, by Euler scheme, a measurable flow of the solution, and we prove the solution is a Markov process.  相似文献   

19.
20.
In this paper, we prove an existence theorem of global smooth solutions to the Cauchy problem for the one-dimensional relativistic Euler equations. The analysis is based on a priori estimates which are obtained by the characteristic method and maximum principle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号