首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental data for an incompressible turbulent moving surface boundary layer are reviewed and a theoretical extension of their predictions is suggested for the case of finite free stream velocities. It is argued that such a boundary layer provides an incompressible analogue for shock-induced turbulent boundary layers. Coles's transformation is used to predict the behaviour of the shock-induced case from the incompressible analogue. These predictions are used to attempt to correlate the available experimental shock-induced turbulent boundary layer data. It is felt that the correlations are reasonably successful for some of the data. It is suggested that the remaining data have been affected by the premature arrival of the contact region and reflected rarefaction wave.  相似文献   

2.
The conventional Clauser-chart method for determination of local skin friction in zero or weak pressure-gradient turbulent boundary layer flows fails entirely in strong pressure-gradient situations. This failure occurs due to the large departure of the mean velocity profile from the universal logarithmic law upon which the conventional Clauser-chart method is based. It is possible to extend this method, even for strong pressure-gradient situations involving equilibrium or near-equilibrium turbulent boundary layers by making use of the so-called non-universal logarithmic laws. These non-universal log laws depend on the local strength of the pressure gradient and may be regarded as perturbations of the universal log law. The present paper shows that the modified Clauser-chart method, so developed, yields quite satisfactory results in terms of estimation of local skin friction in strongly accelerated or retarded equilibrium and near-equilibrium turbulent boundary layers that are not very close to relaminarization or separation.  相似文献   

3.
Experimental data for a two-dimensional (2-D) turbulent boundary layer (TBL) flow and a three-dimensional (3-D) pressure-driven TBL flow outside of a wing/body junction were obtained for an approach Reynolds number based on momentum thickness of Re θ =23,200. The wing shape had a 3:2 elliptical nose, NACA 0020 profiled tail, and was mounted on a flat wall. Some Reynolds number effects are examined using fine spatial resolution (Δy +=1.8) three-velocity-component laser-Doppler velocimeter measurements of mean velocities and Reynolds stresses at nine stations for Re θ =23,200 and previously reported data for a much thinner boundary layer at Re θ =5,940 for the same wing shape. In the 3-D boundary layers, while the stress profiles vary considerably along the flow due to deceleration, acceleration, and skewing, profiles of the parameter correlate well and over available Reynolds numbers. The measured static pressure variations on the flat wall are similar for the two Reynolds numbers, so the vorticity flux and the measured mean velocities scaled on wall variables agree closely near the wall. The stresses vary similarly for both cases, but with higher values in the outer region of the higher Re θ case. The outer layer turbulence in the thicker high Reynolds number case behaves similarly to a rapid distortion of the flow, since stream-wise vortical effects from the wall have not diffused completely through the boundary layer at all measurement stations. Received: 9 June 2000/Accepted: 26 January 2001  相似文献   

4.
Employing laser Doppler anemometry and VITA techniques, the bursting frequency in turbulent boundary layers has been measured over the Reynolds-number range 320 to 1470. The result indicates that the mean and non-dimensional bursting frequency scaled with the variables appropriate for the wall region was constant and independent of Reynoids number. When the same data are plotted using the outer variables of boundary layer to normalize the bursting frequency, the non-dimensional frequency increases as the Reynolds number increases. This is in agreement with the results of Blackwelder et al. (1983) who used hot wire anemometry and VITA technique. The project is supported by the National Natural Science Foundation of China  相似文献   

5.
It is proposed that all fully rough-wall boundary layers should satisfy self-preservation more closely than a smooth-wall boundary layer. Previous work has shown that the self-preserving forms of the momentum and turbulent kinetic energy equations for a zero pressure gradient turbulent boundary layer, at sufficiently high Reynolds number, require that the wall shear stress is constant with x, and the layer thickness increases linearly with x. Measurements in two rough wall boundary layers suggest these conditions are met without assuming a form for the mean velocity distribution, and are more likely to exist in a fully rough wall layer than a smooth wall layer.  相似文献   

6.
《Comptes Rendus Mecanique》2007,335(9-10):590-605
An asymptotic analysis of the structure of the flow at high Reynolds number around a streamlined body is presented. The boundary layer is turbulent. This question is studied with the successive complementary expansion method, SCEM. The starting point is to look for a uniformly valid approximation (UVA) of the velocity field, including the boundary layer and the external flow. Thanks to the use of generalized expansions, SCEM leads to the theory of interactive boundary layer, IBL. For many years, IBL model has been used successfully to calculate aerodynamic flows. Here, the IBL model is fully justified with rational mathematical arguments. The construction of a UVA of the velocity profile in the boundary layer is also studied. To cite this article: J. Cousteix, J. Mauss, C. R. Mecanique 335 (2007).  相似文献   

7.
8.
Summary Similarity laws for the mean flow and scaling laws for the turbulent motion are used in an attempt to obtain a general expression for the eddy viscosity of equilibrium layers. It is found that =0.09 w 2 /w*, in which w 2 is a Reynolds stress representative for the region of overlap between the law of the wall and the velocity-defect law, while w* is the logarithmic slope of the mean velocity profile in that region. The distinction between w and w* is related to the strong inhomogeneity of the mean rate of strain in the inner layer. The results of the theory agree with experimental evidence obtained from transpired equilibrium layers.  相似文献   

9.
The effects of vortex Reynolds number on the statistics of turbulence in a turbulent boundary layer have been investigated. Vortex Reynolds number is defined as the ratio of circulation around the vortex structure to the fluid viscosity. The vortex structure of the outer region was modeled and a full numerical simulation was then conducted using a high-order spectral method. A unit domain of the outer region of a turbulent boundary layer was assumed to be composed of essentially three elements: a wall, a Blasius mean shear, and an elliptic vortex inclined at 45° to the flow direction. The laminar base-flow Reynolds number is roughly in the same range as that of a turbulent boundary layer based on eddy viscosity, and the vortex-core diameter based on the boundary-layer thickness is nearly the same as the maximum mixing length in a turbulent boundary layer. The computational box size, namely, 500, 150, and 250 wall units in the streamwise, surface-normal, and spanwise directions, respectively, is approximately the same as the measured quasi-periodic spacings of the near-wall turbulence-producing events in a turbulent boundary layer. The effects of vortex Reynolds number and the signs of the circulation on the moments of turbulence were examined. The signs mimic the ejection and sweep types of organized motions of a turbulent boundary layer. A vortex Reynolds number of 200 describes the turbulence moments in the outer layer reasonably well.  相似文献   

10.
B. A. Kader 《Fluid Dynamics》1983,18(3):360-367
The aim of the paper is to determine the velocity profile and friction law in turbulent boundary layers that develop under conditions of a negative longitudinal pressure gradient (dP/dx < 0). In contrast to the numerous studies devoted to this problem and based on semi-empirical closure of the hydrodynamic equations, general expressions (containing, of course, some empirical coefficients) will be obtained on the basis of dimensional and similarity arguments alone. In this sense, the results of the paper are a natural continuation of the analysis of decelerated turbulent wall flows by Kader and Yaglom [1, 2]. It is shown that the general dependences found in this manner agree well with numerous experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 29–37, May–June, 1983.I thank A. M. Yaglom for his interest in the work and valuable advice during it.  相似文献   

11.
Surface roughness effects in turbulent boundary layers   总被引:7,自引:7,他引:0  
The effects of surface roughness on a turbulent boundary layer are investigated by comparing measurements over two rough walls with measurements from a smooth wall boundary layer. The two rough surfaces have very different surface geometries although designed to produce the same roughness function, i.e. to have nominally the same effect on the mean velocity profile. Different turbulent transport characteristics are observed for the rough surfaces. Substantial effects on the stresses occur throughout the layer showing that the roughness effects are not confined to the wall region. The turbulent energy production and the turbulent diffusion are significantly different between the two rough surfaces, the diffusion having opposite sign in the region γ/δ < 0.5. Although velocity spectra exhibit differences between the three surfaces, the mean energy dissipation rate does not appear to be significantly affected by the roughness. Received: 19 August 1998/Accepted: 16 February 1999  相似文献   

12.
 Modifications to near-wall turbulent boundary layer structure with increased three-dimensionality have been investigated through the use of hydrogen bubble wire flow visualization. Results indicate that three-dimensionality does not influence the strength or sign of near-wall streamwise vortices. Increased three-dimensionality does stabilize the near-wall structure resulting in less ejection type activity. The spanwise spacing between low-speed streaks also decreased slightly with increased cross-flow. Received: 15 October 1996/Accepted: 2 April 1997  相似文献   

13.
14.
An asymptotic analysis of the equations describing supersonic turbulent flow over an adiabatic wall is carried out for high Reynolds numbers, Re, and mainstream Mach numbers, M e=O(1). A general expression for the adiabatic-wall temperature is derived. The asymptotic theory constrains the types of turbulence models that are suitable to represent the effects of viscous dissipation. A simple algebraic turbulence model is proposed and comparisons with measured total enthalpy profile data show good agreement, capturing the overshoot observed in total enthalpy near the boundarylayer edge.This work was supported by NASA Langley Research Center under Grant NAG-1-832 and the Air Force Office of Scientific Research under Grants AFOSR-91-0069 and F49620-93-0130; Dr. Ruban was supported by a grant from United Technologies Corporation.  相似文献   

15.
Near-wall measurements are performed to study the effects of surface roughness and viscous shear stresses on the transitionally rough regime (5 < k + < 70) of a zero pressure gradient turbulent boundary layer. The x-dependence is known from the eleven consecutive measurements in the streamwise direction, which allows for the computation of the streamwise gradients in the boundary layer equations. Thus, the skin friction is computed from the integrated boundary layer equation with errors of 3 and 5% for smooth and rough, respectively. It is found that roughness destroys the viscous layer near the wall, thus, reducing the contribution of the viscous stress in the wall region. As a result, the contribution in the wall shear stress due to form drag increases, while the viscous stress decreases. This yields Reynolds number invariance in the skin friction as k + increases into the fully rough regime. Furthermore, the roughness at the wall reduces the high peak of the streamwise component of the Reynolds stress in the near-wall region. However, for the Reynolds wall-normal and shear stress components, its contribution is not significantly altered for sand grain roughness.  相似文献   

16.
Coherent structures are essential for the momentum exchange and turbulence production in wall-bounded turbulent flows. Diversified coherent structures have been observed in turbulent boundary layers, and hairpin-based vortices dominate most of the relevant literature. However, there is no consensus yet on the origin and forming mechanism of hairpin vortices. Herein, five cornerstones pertaining to the framework of hairpin-based coherent structures are reviewed, and three different hairpin generation mechanisms are clarified. Next, the time-resolved tomographic particle image velocimetry(Tomo-PIV) is used in an early turbulent boundary layer(Re_θ= 420) to investigate the origin of hairpin vortices. The timelines reveal a triangular bulge in the low-speed streak(LSS), and the initial roll-up occurs at two sides of it. Meanwhile, the material surfaces manifest as a three-dimensional(3D) wave structure in the LSS, which may support the model of a soliton-like coherent structure(SCS). Subsequently, the method of Lagrangian-averaged vorticity deviation is used to detect early vortices. We find that the 3D wave structure is flanked by two vortices, thus confirming the roll-up of timelines and demonstrating the advantage of the Lagrangian criteria in capturing structures in complex flows. These results suggest that various coherent structures may evolve from the metamorphosis of 3D wave structures and their later interaction. Finally, the limitations of traditional experimental and post-processing tools are discussed.  相似文献   

17.
This study examines the pronounced periodicity of large-scale coherent structures in turbulent boundary layers, which are of the order of the boundary layer thickness (δ) and reside in the logarithmic and wake regions. To this end, a series of multi-camera planar particle image velocimetry (PIV) measurements are conducted in a streamwise/spanwise and streamwise/wall-normal planes at a friction Reynolds number of Reτ ≈ 2500. The experiments are configured to capture a large field-of-view with velocity fields that cover a streamwise extent in excess of 15δ. The resulting vector fields reveal large-scale streamwise and spanwise organisation instantaneously, which is often lost when only examining mean statistics. By extracting the dominant streamwise and spanwise Fourier modes of the large-scale motions, a clearer picture of these structural organisations and coherence is presented. A targeted inspection of these dominant modes reveal that these features remain coherent over a significant fraction of the boundary layer thickness in the wall-normal direction, but only a fraction of them have coherence that extends to the wall (wall-coherent). Further, the spatial extents and the population density of these wall-coherent and wall-incoherent modes are characterised, with the former conforming to the attached eddy arguments of Townsend (1976) and the subsequent attached eddy models. Collectively, through the evidence gathered here, we provide a conceptual picture of the representative large-scale structures in turbulent boundary layers, which are likely to have implications on the type of representative structures to be used in structure-based models for these flows.  相似文献   

18.
The algebraic turbulent model of Baldwin and Lomax was incorporated into the incompressible full Navier–Stokes code FIDAP. This model was extensively tested in the past in finite difference codes. We believe that the incorporation of the model also into the finite element code has resulted in a practical method to compute a variety of separated turbulent 2D flows. Firstly, we use the model to compute the attached flow about an aerofoil. Next, the application of the model to separated flows is presented by computing the flows at high angles of attack up to maximum lift. It is shown that the model is capable of predicting separation, steady stall and CLmax. As a difficult test of the model we compute the laminar separation bubble development directly using the full Navier–Stokes finite element code. As far as we know, this approach has not yet been reported. The importance of using an appropriate upwinding is discussed. When possible, comparison of computed results with experiments is presented and the agreement is good.  相似文献   

19.
Fluctuating skin friction is measured in two- and three-dimensional turbulent boundary layers using a MEMS sensor and a wall-wire as reference. Skewness, flatness and spectra of the turbulent skin friction are presented to demonstrate the potential and limitations of the MEMS sensor. The measured turbulence intensities of the order of 0.4 are in general agreement with a number of experimental and DNS studies. However, the fluctuating quantities measured with this MEMS sensor, operated at an over-heat ratio of 1.3, are shown to depend on the Reynolds number or mean skin friction. Therefore, such a high over-heat ratio, which was proven to dramatically increase the accuracy of mean skin friction measurements in a previous study by the authors, may not be appropriate for the measurement of fluctuating wall-shear with MEMS sensors, particularly at low mean shear values.  相似文献   

20.
A method is developed to infer the wall shear stress for three-dimensional turbulent boundary layers based on the assumption that the resultant surface shear stress and the effective velocity based on Prahlad's model correlates the velocity profile into its two-dimensional form. Existence of the near wall region similarity has been demonstrated for three-dimensional turbulent boundary layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号