首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bromo-substituted bisdiselenazolyl radical 4b (R(1) = Et, R(2) = Br) is isostructural with the corresponding chloro-derivative 4a (R(1) = Et, R(2) = Cl), both belonging to the tetragonal space group P(4)2(1)m and consisting of slipped π-stack arrays of undimerized radicals. Variable temperature, ambient pressure conductivity measurements indicate a similar room temperature conductivity near 10(-4) S cm(-1) for the two compounds, but 4b displays a slightly higher thermal activation energy E(act) (0.23 eV) than 4a (0.19 eV). Like 4a, radical 4b behaves as a bulk ferromagnet with an ordering temperature of T(C) = 17.5 K. The coercive field H(c) (at 2 K) of 1600 Oe for 4b is, however, significantly greater than that observed for 4a (1370 Oe). High pressure (0-15 GPa) structural studies on both compounds have shown that compression reduces the degree of slippage of the π-stacks, which gives rise to changes in the magnetic and conductive properties of the radicals. Relatively mild loadings (<2 GPa) cause an increase in T(C) for both compounds, that of 4b reaching a maximum value of 24 K; further compression to 5 GPa leads to a decrease in T(C) and loss of magnetization. Variable temperature and pressure conductivity measurements indicate a decrease in E(act) with increasing pressure, with eventual conversion of both compounds from a Mott insulating state to one displaying weakly metallic behavior in the region of 7 GPa (for 4a) and 9 GPa (for 4b).  相似文献   

2.
Reaction of N-alkylated pyridine-bridged bisdithiazolylium cations [1]+ (R1 =Me, Et; R2 =Ph) with selenium dioxide in acetic acid provides a one-step high-yield synthetic route to bisthiaselenazolylium cations [2]+ (R1 = Me, Et; R2 = Ph). The corresponding radicals 1 and 2 can be prepared by chemical or electrochemical reduction of the cations. Structural analysis of the radicals has been achieved by a combination of single-crystal and powder X-ray diffraction methods. While the two sulfur radicals 1 adopt different space groups (P3(1)21 for R1 = Me and P(-)1 for R1 = Et), the two selenium radicals 2 (space groups P3(1)21 for R1 = Me and P3(2)21 for R1 =Et) are isostructural with each other and also with 1 (R1 = Me, R2 = Ph). Variable-temperature magnetic measurements on all four compounds confirm that they are undimerized S = 1/2 systems, with varying degrees of weak intermolecular antiferromagnetic coupling. Variable-temperature electrical conductivity measurements on the two selenium radicals provide conductivities sigma(300 K) = 7.4 x 10-6 (R1 = Et) and 3.3 x 10-5 S cm-1 (R1 = Me), with activation energies, E(act), of 0.32 (R1 = Et) and 0.29 eV (R1 = Me). The differences in conductivity within the isostructural series is interpreted in terms of their relative solid-state bandwidths, as estimated from Extended Hückel band-structure calculations.  相似文献   

3.
A series of five isostructural bisthiaselenazolyl radicals 2 have been prepared and characterized by X-ray crystallography. The crystal structures, all belonging to the tetragonal space group P42(1)m, consist of slipped pi-stack arrays of undimerized radicals packed about 4 centers running along the z-direction, an arrangement which gives rise to a complex lattice-wide network of close intermolecular Se---Se' contacts. Variations in R1 (Et, Pr, CH2CF3) with R2 = Cl lead to significant changes in the degree of slippage of the pi-stacks and hence the proximity of the Se---Se' interactions. By contrast, variations in R2 (Cl, Br, Me) with R1 = Et induce very little change in either the degree of slippage or the intermolecular contacts. Variable-temperature conductivity (sigma) measurements show relatively constant values for the conductivity sigma(300 K) (10(-5)-10(-4) S cm(-1)) and thermal activation energy E(act) (0.27-0.31 eV). Variable-temperature magnetic susceptibility measurements indicate that radicals 2b and 2c (R1 = Pr, CH2CF3; R2 = Cl) behave as weakly antiferromagnetically coupled Curie-Weiss paramagnets, but in 2a, 2d and 2e (R1 = Et; R2 = Cl, Me, Br) ferromagnetic ordering is observed, with T(c) values of 12.8 (R2 = Cl), 13.6 (R2 = Me), and 14.1 K (R2 = Br). The origin of the dramatically different magnetic behavior across the series has been explored in terms of a direct through-space mechanism by means of DFT calculations on individual pairwise exchange energies. These indicate that antiferromagnetic exchange between radicals along the pi-stacks increases with pi-stack slippage.  相似文献   

4.
A general synthetic route to the resonance-stabilized pyrazine-bridged bisdithiazolyl framework, involving the reductive deprotection of 2,6-diaminopyrazine-bisthiocyanate and cyclization with thionyl chloride, has been developed. An N-methyl bisdithiazolyl radical, 4-methyl-4H-bis[1,2,3]dithiazolo[4,5-b:5',4'-e]pyrazin-3-yl, has been prepared and characterized in solution by electron paramagnetic resonance spectroscopy and cyclic voltammetry. Its crystal structure has been determined at several temperatures. At 295 K, the structure belongs to the space group Cmca and consists of evenly spaced radicals pi-stacked in an alternating ABABAB fashion along the x-direction. At 123 K, the space group symmetry is lowered by loss of C-centering to Pccn, so that the radicals are no longer evenly spaced along the pi-stack. At 88 K, a further lowering of space group symmetry to P21/c is observed. Extended Hückel Theory band structure calculations indicate a progressive opening of a band gap at the Fermi level in the low-temperature structures. Magnetic susceptibility measurements over the range 4-300 K reveal essentially diamagnetic behavior below 120 K. Variable-temperature single-crystal conductivity (sigma) measurements indicate that the conductivity is activated, even at room temperature, with a room-temperature value sigma RT=0.001 S cm-1 and a thermal activation energy Eact=0.19 eV. Under an applied pressure of 5 GPa, sigma RT is increased by 3 orders of magnitude, but the conductivity remains activated, with Eact being lowered to 0.11 eV at 5.5 GPa.  相似文献   

5.
Phase-pure BiCuOSe, which is isostructural to the layered p-type transparent conductor LaCuOS, has been synthesized in high yield by a single-step hydrothermal reaction at low temperature (250 degrees C) and pressure (<20 atm). A moderate reaction temperature of 250 degrees C was sufficiently high to solubilize both Bi2O3 and Cu2O and stabilize monovalent copper and low enough to impede the oxidation of dianionic selenium. BiCuOSe exhibits a relatively high electrical conductivity (sigma approximately 3.3 S cm(-1)) and a reduced band gap (E(g) = 0.75 eV), which compare favorably with the optoelectronic properties of BiCuOS and the cerium-based oxysulfides, CeAgOS and CeCuOS.  相似文献   

6.
An efficient and versatile synthetic route to resonance stabilized bisselenathiazolyl and bisdiselenazolyl radicals 3 and 4 is described. Structural analysis of 3 and 4 confirm that lattice and pi-delocalization energies are sufficient to offset solid-state dimerization of the radicals and that the two selenium-containing radicals are isostructural with the all-sulfur based system 1. Variable temperature conductivity measurements indicate that sequential replacement of sulfur by selenium leads to a progressive increase in conductivity and reduction in thermal activation energy.  相似文献   

7.
The present work reports the electrical properties of high-purity single-crystal TiO(2) from measurements of the electrical conductivity in the temperature range 1073-1323 K and in gas phases of controlled oxygen activities in the range 10(-13) to 10(5) Pa. The effect of the oxygen activity on the electrical conductivity indicates that oxygen vacancies are the predominant defects in the studied ranges of temperature and oxygen activities. The electronic and ionic lattice charge compensations were revealed at low and high oxygen activities, respectively. The determined semiconducting quantities include: the activation energy of the electrical conductivity (E(sigma) = 125-205 kJ.mol(-1)), the activation energies of the electrical conductivity components associated with electrons (E(n) = 218 kJ.mol(-1)), electron holes (E(p) = 34 kJ.mol(-1)), and ions (E(i) = 227 kJ.mol(-1)), and the enthalpy of motion for electronic defects (DeltaH(m) = 4 kJ/mol). The electrical conductivity data are considered in terms of the components related to electrons, holes, and ions. The obtained data allow the determination of the n-p demarcation line in terms of temperature and oxygen activities. The band gap determined from the electronic component of the electrical conductivity is 3.1 eV.  相似文献   

8.
A synthetic sequence to salts of N-alkylated pyridine-bridged 1,2,3-thiaselenazolo-1,2,3-thiaselenazolylium cations [2]+ (R1 = Me, Et; R2 = H) is described. The corresponding radicals 2 (R1 = Me, Et; R2 = H) can be generated from the cations by chemical or electrochemical reduction. Crystals of the two radicals are isostructural and consist of interpenetrating pi-stacked arrays of closed-shell Se-Se sigma-bonded dimers [2]2 laced together with numerous short intermolecular Se- - -Se, Se- - -S, and Se- - -N contacts. Variable-temperature magnetic, conductivity, and near-infrared optical measurements indicate that the bulk materials behave as small band gap semiconductors with room-temperature conductivities sigma(RT) near 10(-6) S cm(-1) and thermal activation energies Ea of 0.32 eV (R1 = Me) and 0.36 eV (R1 = Et). LMTO band structure calculations on both compounds are consistent with this interpretation. The application of external pressure leads to dramatic increases in conductivity; at 4 GPa sigma(RT) reaches a value near 10(-1) S cm(-1) for R1 = Me and 10(-2) S/cm for R1 = Et. The conductivity remains activated for both compounds, but for R1 = Me the activation energy Ea is reduced to near 0.03 eV at 5 GPa, suggestive of a weakly metallic state.  相似文献   

9.
To obtain novel single-component molecular metals, we attempted to synthesize several cobalt complexes coordinated by TTF (tetrathiafulvalene)-type dithiolate ligands. We succeeded in the syntheses and structure determinations of ((n)Bu(4)N)(2)[Co(chdt)(2)](2) (1), ((n)Bu(4)N)(2)[Co(dmdt)(2)](2) (2), [Co(dmdt)(2)](2) (3), and [Co(dt)(2)](2) (4) (chdt = cyclohexeno-TTF-dithiolate, dmdt = dimethyl-TTF-dithiolate, and dt = TTF-dithiolate). Structure analyses of complexes 1-4 revealed that two monomeric [Co(ligand)2]- or [Co(ligand)(2)](0) units are connected by two Co-S bonds resulting in dimeric [Co(ligand)(2)](2)(2-) or [Co(ligand)(2)](2) molecules. Complex 1 has a cation-anion-intermingled structure and exhibited Curie-Weiss magnetic behavior with a large Curie constant (C = 2.02 K x emu x mol(-1)) and weak antiferromagnetic interactions (theta = -8.3 K). Complex 2 also has a cation-anion-intermingled structure. However, the dimeric molecules are completely isolated by cations. Complexes 3 and 4 are single-component molecular crystals. The molecules of complex 3 form two-dimensional molecular stacking layers and exhibit a room-temperature conductivity of sigmart = 1.2 x 10(-2) S.cm(-1) and an activation energy of E(a) = 85 meV. The magnetic behavior is almost consistent with Curie-Weiss law, where the Curie constant and Weiss temperature are 8.7 x 10(-2) K x emu x mol(-1) and -0.85 K, respectively. Complex 4 has a rare chair form of the dimeric structure. The electrical conductivity was fairly large (sigmart = 19 S.cm(-1)), and its temperature dependence was very small (sigma(0.55K)/sigma(rt) = ca. 1:10), although the measurements were performed on the compressed pellet sample. Complex 4 showed an almost constant paramagnetic susceptibility (chi(300) (K) = 3.5 x 10(-4) emu x mol(-1)) from 300 to 50 K. The band structure calculation of complex 4 suggested the metallic nature of the system. Complex 4 is a novel single-component molecular conductor with a dimeric molecular structure and essentially metallic properties down to very low temperatures.  相似文献   

10.
Semiquinone-bridged bisdithiazolyls 3 represent a new class of resonance-stabilized neutral radical for use in the design of single-component conductive materials. As such, they display electrochemical cell potentials lower than those of related pyridine-bridged bisdithiazolyls, a finding which heralds a reduced on-site Coulomb repulsion U. Crystallographic characterization of the chloro-substituted derivative 3a and its acetonitrile solvate 3a·MeCN, both of which crystallize in the polar orthorhombic space group Pna2(1), revealed the importance of intermolecular oxygen-to-sulfur (CO···SN) interactions in generating rigid, tightly packed radical π-stacks, including the structural motif found for 3a·MeCN in which radicals in neighboring π-stacks are locked into slipped-ribbon-like arrays. This architecture gives rise to strong intra- and interstack overlap and hence a large electronic bandwidth W. Variable-temperature conductivity measurements on 3a and 3a·MeCN indicated high values of σ(300 K) (>10(-3) S cm(-1)) with correspondingly low thermal activation energies E(act), reaching 0.11 eV in the case of 3a·MeCN. Overall, the strong performance of these materials as f = ? conductors is attributed to a combination of low U and large W. Variable-temperature magnetic susceptibility measurements were performed on both 3a and 3a·MeCN. The unsolvated material 3a orders as a spin-canted antiferromagnet at 8 K, with a canting angle φ = 0.14° and a coercive field H(c) = 80 Oe at 2 K.  相似文献   

11.
The layered-sheet architecture of the crystal structure of the fluoro-substituted oxobenzene-bridged bisdithiazolyl radical FBBO affords a 2D π-electronic structure with a large calculated bandwidth. The material displays high electrical conductivity for a f = 1/2 system, with σ(300 K) = 2 × 10(-2) S cm(-1). While the conductivity is thermally activated at ambient pressure, with E(act) = 0.10 eV at 300 K, indicative of a Mott insulating state, E(act) is eliminated at 3 GPa, suggesting the formation of a metallic state. The onset of metallization is supported by infrared measurements, which show closure of the Mott-Hubbard gap above 3 GPa.  相似文献   

12.
In a joint experimental and theoretical effort, we have studied dissociative electron attachment (DEA) to the CF3Br molecule at electron energies below 2 eV. Using two variants of the laser photoelectron attachment method with a thermal gas target (T(G) = 300 K), we measured the energy dependent yield for Br- formation over the range E = 3-1200 meV with resolutions of about 3 meV (E < 200 meV) and 35 meV. At the onsets for excitation of one and two quanta for the C-Br stretching mode nu3, downward cusps are detected. With reference to the recommended thermal (300 K) attachment rate coefficient k(A)(CF3Br) = 1.4 x 10(-8) cm3 s(-1), absolute cross sections have been determined for Br- formation. In addition, we studied Br- and (CF3Br)Br- formations with a seeded supersonic target beam (10% CF3Br in helium carrier gas, with a stagnation pressure of 1-4 bars and nozzle temperatures of 300 and 600 K) and found prominent structure in the anion yields due to cluster formation. Using the microwave pulse radiolysis swarm technique, allowing for controlled variation of the electron temperature by microwave heating, we studied the dependence of the absolute DEA rate coefficient on the mean electron energy E over the range of 0.04-2 eV at gas temperatures T(G) ranging from 173 to 600 K. For comparison with the experimental results, semiempirical resonance R-matrix calculations have been carried out. The input for the theory includes the known energetic and structural parameters of the neutral molecule and its anion; the parameters of the resonant anion curves are chosen with reference to the known thermal rate coefficient for the DEA process. For the gas temperature T(G) = 300 K, good overall agreement of the theoretical DEA cross section with the experimental results is observed; moreover, rate coefficients for Br- formation due to Rydberg electron transfer, calculated with both the experimental and the theoretical DEA cross sections, are found to agree with the previously reported absolute experimental values. At T(G) = 300 K, satisfactory agreement is also found between the calculated and experimental attachment rate coefficients for mean electron energies E = 0.04-2 eV. The strong increase of the measured rate coefficients with rising gas temperature, however, could be only partially recovered by the R-matrix results. The differences may result from the influence of thermal excitations of other vibrational modes not included in the theory.  相似文献   

13.
New molecular charge-transfer complexes of bis(ethylenedithio)tetrathiafulvalene (ET), (ET)Cu(2)Br(4) (1), (ET)(2)Cu(6)Br(10) (2), (ET)(2)[Cu(4)Br(6)ET] (3), (ET)(2)Cu(2)Br(4) (4), (ET)(2)Cu(3)Br(7)(H(2)O) (5), and (ET)(2)Cu(6)Br(10)(H(2)O)(2) (6), have been synthesized by diffusing reaction of ET and Cu(II)Br(2). Their crystal structures and physical properties have been investigated. X-ray analyses revealed that ET molecules coordinated to the copper ions with the sulfur atoms of the ethylenedithio groups in all compounds. The Cu-S distances are found in the range 2.268(5)-2.417(8) A, being close to the typical Cu(I)-S coordination bond distances. Strong d-pi interactions between d-electrons of the copper ions and pi-electrons of the ET molecules can be expected through the Cu-S coordination bonds. ET molecules behave as trans-bidentate ligands bonding to two different copper ions in 1 and 3, as cis-bidentate ligands in 2, 5, and 6, and as monodentate ligands in 4. In the crystal structure of 3, there are two types of ET molecules in the crystal structure, where the first type is a trans-bidentate ligand and the second forms a stacking structure by itself. Compounds 1, 2, 4, and 6 show semiconducting behavior down to low temperature (sigma(RT) = 1.6 x 10(-2) S cm(-1) and E(a) = 122 meV for 1, sigma(RT) = 2.1 S cm(-1) and E(a) = 21 meV for 2, sigma(RT) = 5.4 x 10(-4) S cm(-1) and E(a) = 239 meV for 4, and sigma(RT) = 5.1 x 10(-2) S cm(-1) and E(a) = 207 meV for 6). On the other hand, in 3, a metal-like region is observed along the b-axis and c-axis, due to the contribution of stacked ET molecules, and a metal-semiconductor transition occurs at 280 and 270 K, respectively. Also, 5 exhibits metallic conductivity in the temperature ranges 240-300 and 200-300 K along the b-axis and c-axis, respectively, despite the oxidation state of ET with 2+.  相似文献   

14.
Black single crystals of the two nonstoichiometric cerium coinage-metal oxysulfide compounds CeCu(x)OS and CeAg(x)OS (x approximately 0.8) have been prepared by the reactions of Ce2S3 and CuO or Ag2O at 1223 or 1173 K, respectively. A black powder sample of CeAgOS has been prepared by the stoichiometric reaction of Ce2S3, CeO2, Ag2S, and Ag at 1073 K. These isostructural materials crystallize in the ZrSiCuAs structure type with two formula units in the tetragonal space group P4/nmm. Refined crystal structure results and chemical analyses provide evidence that the previously known anomalously small unit-cell volume of LnCuOS for Ln = Ce (Ln = rare-earth metal) is the result of Cu vacancies and the concomitant presence of both Ce3+ and Ce4+. Both CeCu(0.8)OS and CeAgOS are paramagnetic with mu(eff) values of 2.13(6) and 2.10(1) mu(B), respectively. CeCu(0.8)OS is a p-type semiconductor with a thermal activation energy Ea = 0.22 eV, sigma(electrical) = 9.8(1) 10(-3) S/cm at 298 K, and an optical band gap Eg < 0.73 eV. CeAgOS has conductivity sigma(conductivity) = 0.16(4) S/cm and an optical band gap Eg = 0.71 eV at 298 K. Theoretical calculations with an on-site Coulomb repulsion parameter indicate that the Ce 4f states are fully spin-polarized and are not localized in CeCuOS, CeCu(0.75)OS, or CeAgOS. Calculated band gaps for CeCu(0.75)OS and CeAgOS are 0.6 and 0.8 eV, respectively.  相似文献   

15.
A homogeneous series of heterobimetallic complexes of [R-Fc(4-py)Ru(NH3)5](PF6)2 (R = H, Et, Br, acetyl; Fc(4-py) = 4-ferrocenylpyridine) have been prepared and characterized. The mixed-valence species generated in situ using ferrocenium hexafluorophosphate as the oxidant show class II behavior, and the oxidized sites are ruthenium centered. deltaE(1/2), E(1/2)(Fe(III)/Fe(II)) - E(1/2)(Ru(III)/Ru(II)), an upper limit for deltaGo that is an energetic difference between the donor and acceptor sites, changes sharply and linearly with Gutmann solvent donor number (DN) and Hammett substituent constants (sigma). The solvent-dependent and substituent-dependent intervalence transfer bands were found to vary almost exclusively with deltaE(1/2). The activation energy for the optical electron transfer versus deltaE(1/2) plot yields a common nuclear reorganization energy (lambda) of 0.74 +/- 0.04 eV for this series. The equation that allows one to incorporate the effect of both solvent donicity and substituents on optical electron transfer is Eop = lambda + deltaGo, where deltaGo = (deltaGo)intrinsic + (deltaGo)solvent donicity + (deltaGo)substituent effect (deltaGo )intinnsic with a numerical value of 0.083 +/- 0.045 eV was obtained from the intercept of the deltaE(1/2) of [H-Fc(4-py)Ru(NH3)5]2+,3+,4+ versus DN plot. (deltaGo)solvent donicity was obtained from the average slopes of the deltaE(1/2) of [R-Fc-(4-py)Ru(NH3)5]2+,3+,4+ versus DN plot, and (deltaGo)substituent effect was obtained from the average slopes of the corresponding deltaE(1/2) versus sigma plot. The empirical equation allows one to finely tune Eop of this series to Eop = 0.82 + 0.019(DN) + 0.44sigma eV at 298 K, and the discrepancy between the calculated and experimental data is less than 6%.  相似文献   

16.
A series of triphenylamine-centered starburst quinolines (1a-1g) have been synthesized by Friedl?nder condensation of the 4,4',4'-triacetyltriphenylamine (2) and 2-aminophenyl ketones (3a-3g) in the presence of catalytic sulfuric acid and characterized well. They are thermally robust with high glass transition temperatures (above 176.4 °C) and decomposition temperatures (above 406 °C). These compounds emit blue fluorescence with λ(max)(Em) ranging from 433 to 446 nm in dilute toluene solution and 461 to 502 nm in the solid-state and have a relatively high efficiency (Φ(u) = 0.98-0.57). 1a-1g have estimated ionization potentials (IP) of 4.54 to 6.45 eV which are significantly near or higher than those of well-known electron transport materials (ETMs), including tris(8-hydroxyquinoline)aluminium (Alq(3)) (IP = 5.7-5.9 eV), and previously reported oligoquinolines (IP = 5.53-5.81 eV). Quantum chemical calculations using DFT B3LYP/6-31G* showed the highest occupied molecular orbital (HOMO) of -5.05 to -4.81 eV, which is close to the work function of indium tin oxide (ITO). These results demonstrate the potential of 1a-1g as hole-transporting/light-emitting/electron-transport materials and the host-materials of a dopant for hole-injecting for applications in organic light-emitting devices.  相似文献   

17.
Four kinds of 1:1 and 1:3 salts of 3-[4-(trimethylammonio)phenyl]-1,5-diphenyl-6-oxoverdazyl radical cation ([1](+)) and its mono- and dimethyl derivatives ([2](+) and [3](+)) with Ni(dmit)(2) anions (dmit = 1,3-dithiol-2-thione-4,5-dithiolate) ([1](+)[Ni(dmit)(2)](-) (4), [2](+)[Ni(dmit)(2)](-) (5), [3](+)[Ni(dmit)(2)](-) (6), and [1](+)[Ni(dmit)(2)](3)(-) (7)) have been prepared, and the magnetic susceptibilities (chi(M)) have been measured between 1.8 and 300 K. The chi(M) values of salts 5 and 7 can be well reproduced by the sum of the contributions from (i). a Curie-Weiss system with a Curie constant of 0.376 (K emu)/mol and negative Weiss constants (THETAV;) of -0.4 and -1.7 K and (ii). a dimer system with strong negative exchange interactions of 2J/k(B) = -354 and -258 K, respectively. The dimer formations in Ni(dmit)(2) anions have been ascertained by the crystal structure analyses of salts 4-6. In salts 4 and 6, Ni(dmit)(2) dimer molecules are sandwiched between two verdazyl cations, indicating the formation of a linear tetramer in 4 and 6. The magnetic susceptibility data for salts 4 and 6 have been fitted to a linear tetramer model using an end exchange interaction of 2J(1)/k(B) = -600 K and a central interaction of 2J(2)/k(B) = -280 K for 4 and 2J(1)/k(B) = -30 K and 2J(2)/k(B) = -580 K for 6, respectively. The results of the temperature dependence of the g(T) value in salts 4-6 obtained by ESR measurement also support the above analyses. The 1:1 salts 4-6 are insulators. On the other hand, the conductivity of the 1:3 salt 7 at 20 degrees C was sigma = 0.10 S cm(-)(1) with an activation energy E(A) = 0.099 eV, showing the semiconductor property. Salt 7 is a new molecular paramagnetic semiconductor.  相似文献   

18.
Dissociative recombination of the deuterated acetaldehyde ion CD3CDO(+) has been studied at the heavy-ion storage ring CRYRING, located at the Manne Siegbahn Laboratory, Stockholm, Sweden. Product branching fractions together with absolute DR cross-sections were measured. The branching fractions were determined at a relative collision energy between the ions and the electrons of approximately 0 eV. With a probability of 34% the DR events resulted in no ruptures of bonds between heavy atoms (i.e. no breakage of the C-C bond or the C[double bond, length as m-dash]O bond). In the remaining 66% of the events one of the bonds between the heavy atoms was broken. The energy-dependent cross-section for the DR reaction was measured between approximately 0 and 1 eV relative kinetic energy. In the energy region between 1 meV and 0.2 eV the absolute cross section could be fitted by the expression sigma(E) = 6.8 x 10(-16)E(-1.28) cm(2), whereas in the energy interval between 0.2 and 1 eV the data were best fitted by sigma(E) = 4.1 x 10(-16)E(-1.60) cm(2). From these cross section data the thermal rate coefficient (as a function of the electron temperature), alpha(T) = 9.2 x 10(-7) (T/300)(-0.72) cm(3) s(-1) was obtained.  相似文献   

19.
The reaction of K3[M(III)(ox)3].3H2O [M = V (1), Cr; ox = oxalate], Mn(II)/V(II), and [N(n-Bu)4]Br in water leads to the isolation of 2-D V-based coordination polymers, [[N(n-Bu)4][Mn(II)V(III)(ox)3]]n (2), [[N(n-Bu)4][V(II)Cr(III)(ox)3]]n (3), [[N(n-Bu)4][V(II)V(III)(ox)3]]n (4), and an intermediate in the formation of 4, [[N(n-Bu)4][V(II)V(III)(ox)3(H2O)2]]n.2.5H2O (4a), while 1-D [V(II)(ox)(H2O)2]n (5) is obtained by using Na2ox and [V(OH2)6]SO4 in water. The structures of 1-5 have been investigated by single crystal and/or powder X-ray crystallography. In 1, V(III) is coordinated with three oxalate dianions as an approximately D3 symmetric, trigonally distorted octahedron. 1 is paramagnetic [mu(eff) = 2.68 mu(B) at 300 K, D = 3.84 cm(-1) (D/k(B) = 5.53 K), theta = -1.11 K, and g = 1.895], indicating an S = 1 ground state. 2 exhibits intralayer ferromagnetic coupling below 20 K, but does not magnetically order above 2 K, and 3 shows a strong antiferromagnetic interaction between V(II), S = 3/2 and Cr(III), S = 3/2 ions (theta = -116 K) within the 2-D layers. 4 and 4a magnetically order as ferrimagnets at T(c)'s, taken as the onset of magnetization, of 11 and 30 K, respectively. The 2 K remanent magnetizations are 2440 and 2230 emu.Oe mol(-1) and the coercive fields are 1460 and 4060 Oe for 4 and 4a, respectively. Both 4 and 4a clearly show frequency dependence, indicative of spin-glass-like behavior. The glass transition temperatures were at 6.3 and 27 K, respectively, for 4 and 4a. 1-D 5 exhibits antiferromagnetic coupling of -4.94 cm(-1) (H = -2Jsigma(i=1)n.S(i-1) - gmu(B)sigma(i=0)(n)H.S(i)) between the V(II) ions.  相似文献   

20.
The electrical, optical, and metal-semiconductor contact properties of the polyaniline prepared by emulsion polymerization have been investigated to obtain an organic semiconductor material. The obtained results suggest that the polyaniline (PANI) studied is an organic semiconductor material with optical band gap (E(g) = 2.21 eV) and room electrical conductivity (sigma(25) = 3.12 x 10(-2) S/cm) values. A Schottky diode with configuration Ag/PANI/n-Si was fabricated. The ideality factor and barrier height of Ag/PANI/n-Si diode at room temperature were found to be 4.59 and 0.38 eV, respectively. The obtained diode parameters change with temperature. The Richardson constant A* value for the Ag/PANI/n-Si diode was found to be 3.81 x 10(-4) A/cm(2).K. The Ag/PANI/n-Si diode is a metal-insulator-semiconductor-type device. The standard deviation, which is a measure of the barrier homogeneity, was found to be 0.14, indicating the presence of interface inhomogeneities. It can be concluded that the polyaniline prepared by emulsion polymerization is an organic semiconductor and Ag/PANI/n-Si configuration shows a Schottky contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号