首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Bone marrow-derived mesenchymal stromal cells (MSCs) have been reported to be beneficial for the treatment of liver fibrosis. Here, we investigated the use of genetically engineered MSCs that overexpress hepatocyte growth factor (HGF) as a means to improve their therapeutic effect in liver fibrosis. Liver fibrosis was induced by intraperitoneal injection of dimethylnitrosamine. HGF-secreting MSCs (MSCs/HGF) were prepared by transducing MSCs with an adenovirus carrying HGF-encoding cDNA. MSCs or MSCs/HGF were injected directly into the spleen of fibrotic rats. Tissue fibrosis was assessed by histological analysis 12 days after stem cell injection. Although treatment with MSCs reduced fibrosis, treatment with MSCs/HGF produced a more significant reduction and was associated with elevated HGF levels in the portal vein. Collagen levels in the liver extract were decreased after MSC/HGF therapy, suggesting recovery from fibrosis. Furthermore, liver function was improved in animals receiving MSCs/HGF, indicating that MSC/HGF therapy resulted not only in reduction of liver fibrosis but also in improvement of hepatocyte function. Assessment of cell and biochemical parameters revealed that mRNA levels of the fibrogenic cytokines PDGF-bb and TGF-β1 were significantly decreased after MSC/HGF therapy. Subsequent to the decrease in collagen, expression of matrix metalloprotease-9 (MMP-9), MMP-13, MMP-14 and urokinase-type plasminogen activator was augmented following MSC/HGF, whereas tissue inhibitor of metalloprotease-1 (TIMP-1) expression was reduced. In conclusion, therapy with MSCs/HGF resulted in an improved therapeutic effect compared with MSCs alone, probably because of the anti-fibrotic activity of HGF. Thus, MSC/HGF represents a promising approach toward a cell therapy for liver fibrosis.  相似文献   

2.
Tumor penetration and the accumulation of nanomedicines are crucial challenges in solid tumor therapy. By taking advantage of the MSC tumor-tropic property, we developed a mesenchymal stem cell (MSC)-based drug delivery system in which paclitaxel (PTX)-encapsulating hyaluronic acid-poly (D,L-lactide-co-glycolide) polymeric micelles (PTX/HA-PLGA micelles) were loaded for glioma therapy. The results indicated that CD44 overexpressed on the surface of both MSCs and tumor cells not only improved PTX/HA-PLGA micelle loading in MSCs, but also promoted the drug transfer between MSCs and adjacent cancer cells. It was hypothesized that CD44-mediated transcytosis played a crucial role and allowed deep glioma penetration depending on sequential intra–intercellular delivery via endocytosis–exocytosis. MSC-micelles were able to infiltrate from normal brain parenchyma towards contralateral tumors and led to the eradication of glioma. The survival of orthotopic glioma-bearing rats was significantly extended. In conclusion, the MSC-based delivery of HA-PLGA micelles is a potential strategy for tumor-targeting drug delivery.  相似文献   

3.
Physical cues from the extracellular microenvironment play an important role in regulating cell behavior, such as adhesion, migration, and differentiation. Many studies have shown that different physical parameters (eg, stiffness and topography) could modulate the in vitro differentiation of mesenchymal stem cells (MSCs), which had multilineage differentiation potential and could be easily isolated from various tissues such as bone marrow, adipose tissue, and the umbilical cord. However, the underlying mechanism of the topographical influence on MSCs and the detailed cell‐substrate interaction remain unclear. Here, we present oriented elliptical inverse opal structures for regulating the morphology and alignment of bone marrow‐derived MSCs. The inverse opal structures were made through a convenient bottom‐up approach of self‐assembly, which is facile and cost effective. MSCs cultured on the oriented structures were highly aligned and extended highly oriented thick lamellipodia. Moreover, the oriented substrates cracked along the lateral boundary of the cells, suggesting that a strong cell‐substrate interaction was induced by the response of MSCs to the oriented topography. These features of the oriented elliptical topography indicated their promising value in stem cell research and tissue engineering.  相似文献   

4.
We report that human mesenchymal stem cells (hMSCs) were successfully labeled with poly(lactide‐co‐glycolide) nanoparticles (PLGA NPs) surface‐conjugated quantum dots (QDs) (PLGA‐QD NPs) via endocytosis pathway. These NPs were not toxicity even treated with PLGA‐QD NPs at high concentrations for at least four weeks. Besides, PLGA‐QD NPs‐labeled hMSCs did not change their proliferation and differentiation capability toward the cell fates of adipocytes, osteocytes, and chrondrocytes. It's known that PLGA has been widely employed to act as delivery carrier which encapsulates drugs and releases them under a controlled way. Currently, we have also demonstrated that FITC‐loaded PLGA‐QD NPs degraded in hMSCs to achieve intracellular release of FITC. The aim of this research is to investigate viability, proliferation and differentiation capability and the potential for gene delivery of MSCs labeled with PLGA‐QD NPs. In addition to PLGA‐QD NPs, QDs alone were used to serve as a control set for comparison.  相似文献   

5.
从蛋白质组学角度分析大鼠骨髓间充质干细胞(MSCs)体外定向分化为心肌细胞过程中蛋白表达情况, 采用二维电泳分离蛋白, 用PDQuest软件分析蛋白表达差异, 并采用质谱(MALDI-TOF-MS)进行鉴定, 得到了54个蛋白点, 对蛋白的生物功能分析表明, 部分蛋白通过不同的信号途径参与了MSCs的分化过程.  相似文献   

6.
Supramolecular hydrogels self-assembled by alpha-cyclodextrin and methoxypolyethylene glycol-poly(caprolactone)-(dodecanedioic acid)-poly(caprolactone)-methoxypolyethylene glycol (MPEG-PCL-MPEG) triblock polymers were prepared and characterized in vitro and in vivo. The sustained release of dextran-fluorescein isothiocyanate (FITC) from the hydrogels lasted for more than 1 month, which indicated that the hydrogels were promising for controlled drug delivery. ECV304 cells and marrow mesenchymal stem cells (MSC) were encapsulated and cultured in the hydrogels, during which the morphologies of the cells could be kept. The in vitro cell viability studies and the in vivo histological studies demonstrated that the hydrogels were non-cytotoxic and biocompatible, which indicated that the hydrogels prepared were promising candidates as injectable scaffolds for tissue engineering applications.  相似文献   

7.
Nanoparticles‐based drug delivery strategies have been widely researched for cancer therapy. However, most of them are expected to accumulate in tumor sites via the enhanced permeability and retention (EPR) effect, which is insufficient to deliver the loaded drug into tumors. Cell membrane–camouflaged nanoparticles have obtained much attention for their excellent stability and long blood circulation and reduced the macrophage cells uptake in drug delivery. Herein, bone marrow–derived mesenchymal stem cell membrane vesicle (SCV)–coated paclitaxel (PTX)–loaded poly (lactide‐co‐glycolide) (PLGA) nanoparticles (SCV/PLGA/PTX) were fabricated as the efficient orthotopic breast cancer–targeted drug delivery system. The SCV/PLGA/PTX showed excellent stability, more controlled PTX release, and more effective antitumor effect in vitro. After administration in vivo, SCV/PLGA/PTX exhibited the long‐term retention and enhanced accumulation at tumor sites due to the immune escape and mesenchymal stem cell–mimicking cancer‐targeting capacity. As expected, the SCV/PLGA/PTX could significantly suppress the primary tumor growth by increased apoptosis and necrosis areas within tumor tissues and attenuated the toxic side effects of PTX in 4T1 orthotopic breast cancer model. The study indicated the mesenchymal stem cell membrane coating strategy was highly efficient for targeted drug delivery, which provided a new insight for precise and effective breast cancer treatment.  相似文献   

8.
Biodegradable poly(lactic-co-glycolic acid) (PLGA)/carboxyl-functionalized multi-walled carbon nanotube (c-MWCNT) nanocomposites were successfully prepared via solvent casting technique. Rat bone marrow-derived mesenchymal stem cells (MSCs) were employed to assess the biocompatibility of the nanocomposites in vitro. Scanning electron microscopy (SEM) observations revealed that c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLGA matrix. Surface properties were determined by means of static contact angle, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analysis. The presence of c-MWCNTs increased the mechanical properties of the nanocomposites. Seven-week period in vitro degradation test showed the addition of c-MWCNTs accelerated the hydrolytic degradation of PLGA. In addition, SEM proved that the cells could adhere to and spread on films via cytoplasmic processes. Compared with control groups, MSCs cultured onto PLGA/c-MWCNT nanocomposites exhibited better adhesion and viability and also displayed significantly higher production levels of alkaline phosphatase (ALP) over 21 days culture. These results demonstrated that c-MWCNTs modified PLGA films were beneficial for promoting cell growth and inducing MSCs to differentiate into osteoblasts. This work presented here had potential applications in the development of 3-D scaffolds for bone tissue engineering.  相似文献   

9.
干细胞迁移机理的近场扫描光学显微术研究   总被引:1,自引:0,他引:1  
将内皮细胞生长因子(VEGF)置于甲基纤维素碟中形成VEGF的浓度梯度分布,并将人脐带间充质干细胞(Mesenchymal stem cells,MSCs)于此浓度梯度中培养,观察VEGF能否诱导MSCs定向迁移。应用近场扫描光学显微术(Near-field scanning optical microscopy,NSOM)同时获取了VEGF诱导前后的MSCs的形貌和光学信息。结果表明,近场光学图观测到形貌图上所没有的黑色斑点,分析认为这些黑斑为细胞的黏着斑。近场光学图显示经过VEGF诱导后细胞的黏着斑数量明显增加。同时,对诱导前后干细胞的骨架蛋白进行免疫荧光标记并用共聚焦显微镜进行观察,结果表明细胞骨架由诱导前的无序状态转变为诱导后的有序状态,说明诱导后的干细胞处于迁移状态。光学超微结构图则显示了诱导后干细胞表面的光学细节比诱导前细胞大量增加,出现了大量直径约200 nm的光斑,这是由于细胞表面大量分泌黏附分子等蛋白分子引起的,这些结果为VEGF能够诱导MSCs进行定向迁移提供了实验依据和可视化证明。也表明NSOM不但能提供高分辨的光学分辨率,还可提供生物细胞精细结构的更深层次的光学信息。  相似文献   

10.
间充质干细胞(MSCs)具有高度自我更新能力、多分化潜能、体外易分离和培养的特性,是细胞治疗和组织工程重要的种子细胞来源,但如何大规模地获得具有可再生活性的MSCs一直是限制其临床应用的关键因素,近几年发展起来的贴壁动物细胞动态培养技术为MSCs的大规模体外扩增提供了一条重要的途径。本综述结合动物细胞扩增载体的发展现状,主要介绍了用于间充质干细胞三维动态培养的明胶载体、海藻酸盐载体、壳聚糖载体和其他多糖载体等常规载体及其表面修饰和改性方法,并进一步介绍了以非酶解途径回收扩 增细胞的新型干细胞载体的研究进展。随着新型载体材料的涌现以及人们对干细胞生长和扩增特点的了解,采用三维动态培养技术安全而有效地大规模体外扩增MSCs的必要性将得到进一步的确认。  相似文献   

11.
为了多层面探讨共培养微环境诱导法定向诱导骨髓间充质干细胞(MSCs)心肌样分化的可行性,取第3代MSCs与原代心肌细胞(CMs)进行共培养。在显微镜下观察诱导1周后的MSCs形态学变化,用免疫荧光和实时荧光定量聚合酶链式反应(RT-PCR)分别检测诱导的MSCs中心肌肌钙蛋白I(cTnI)、α-肌动蛋白(α-actin)、Nkx-2.5和GATA-4的基因表达变化情况。采用超高效液相色谱-串联质谱(UPLC-MS/MS)分别检测诱导组和对照组的代谢产物。诱导1周后的MSCs形态呈心肌样改变,cTnI、α-actin、Nkx-2.5和GATA-4的基因表达均明显升高,正交偏最小二乘法判别分析(OPLS-DA)模型显示诱导的MSCs代谢物向CMs转变趋势明显。通过多元和单元统计分析筛选差异变量,根据一级质谱和二级质谱比对结果,最终确定12种差异代谢物。与未经诱导的MSCs相比,经诱导的MSCs与CMs中变化趋势相同的差异代谢物有7种,变化趋势不同的差异代谢物有5种。实验结果表明,无论从形态、基因、蛋白质还是代谢层面看,MSCs通过与CMs间接接触共培养后均发生了心肌样改变,但是与CMs仍存在差异。  相似文献   

12.
How to improve the therapeutic efficacy of cell delivery during mechanical injection has been a great challenge for tissue engineering. Here, we present a facile strategy based on dynamic chemistry to prepare injectable hydrogels for efficient stem cell delivery using hyaluronic acid (HA) and poly(γ-glutamic acid) (γ-PGA). The combination of the guest–host (GH) complexation and dynamic hydrazone bonds enable the HA/γ-PGA hydrogels with physical and chemical dual dynamic network and endow hydrogels a stable structure, rapid self-healing ability, and injectability. The mechanical properties, self-healing ability, and adaptability can be programmed by changing the ratio of GH network to hydrazine bond cross-linked network. Benefitting from the dynamic cross-linking networks, mild preparation process, and cytocompatibility of HA/γ-PGA hydrogels, bone marrow mesenchymal stem cells (BMSCs) show high cell viability in this system following mechanical injection. Moreover, HA/γ-PGA hydrogels can promote BMSC proliferation and upregulate the expression of cartilage-critical genes. Notably, in a rabbit auricular cartilage defect model, BMSC-laden HA/γ-PGA hydrogels can effectively promote cartilage regeneration. Together, we propose a general strategy to develop injectable self-healing HA/γ-PGA hydrogels for effective stem cell delivery in cartilage tissue engineering.  相似文献   

13.
Stem cells are used for the investigation of developmental processes at both cellular and organism levels and offer tremendous potentials for clinical applications as an unlimited source for transplantation. Gangliosides, sialic acid-conjugated glycosphingolipids, play important regulatory roles in cell proliferation and differentiation. However, their expression patterns in stem cells and during neuronal differentiation are not known. Here, we investigated expression of gangliosides during the growth of mouse embryonic stem cells (mESCs), mesenchymal stem cells (MSCs) and differentiated neuronal cells by using high-performance thin-layer chromatography (HPTLC). Monosialoganglioside 1 (GM1) was expressed in mESCs and MSCs, while GM3 and GD3 were expressed in embryonic bodies. In the 9-day old differentiated neuronal cells from mESCs cells and MSCs, GM1 and GT1b were expressed. Results from immunostaining were consistent with those observed by HPTLC assay. These suggest that gangliosides are specifically expressed according to differentiation of mESCs and MSCs into neuronal cells and expressional difference of gangliosides may be a useful marker to identify differentiation of mESCs and MSCs into neuronal cells.  相似文献   

14.
The design of drug delivery systems capable of minimal endolysosomal trapping, controlled drug release, and real‐time monitoring of drug effect is highly desirable for personalized medicine. Herein, by using mesoporous silica nanoparticles (MSNs) coated with cell‐penetrating poly(disulfide)s and a fluorogenic apoptosis‐detecting peptide (DEVD‐AAN), we have developed a platform that could be uptaken rapidly by mammalian cells via endocytosis‐independent pathways. Subsequent loading of these MSNs with small molecule inhibitors and antisense oligonucleotides resulted in intracellular release of these drugs, leading to combination inhibition of endogenous miR‐21 activities which was immediately detectable by the MSN surface‐coated peptide using two‐photon fluorescence microscopy.  相似文献   

15.
The use of stem-cell-based therapies in regenerative medicine and in the treatment of disorders such as Parkinson, Alzheimer's disease, diabetes, spinal cord injuries, and cancer has been shown to be promising. Among all stem cells, mesenchymal stem cells (MSCs) were reported to have anti-apoptotic, immunomodulatory, and angiogenic effects which are attributed to the restorative capacity of these cells. Human tooth germ stem cells (HTGSCs) having mesenchymal stem cell characteristics have been proven to exert high proliferation and differentiation capacity. Unlike bone-marrow-derived MSCs, HTGSCs can be easily isolated, expanded, and cryopreserved, which makes them an alternative stem cell source. Regardless of their sources, the stem cells are exposed to physical and chemical stresses during cryopreservation, hindering their therapeutic capacity. Amelioration of the side effects of cryopreservation on MSCs seems to be a priority in order to maximize the therapeutic efficacy of these cells. In this study, we tested the effect of Pluronic 188 (F68) on HTGSCs during long-term cryopreservation and repeated freezing and defrosting cycles. Our data revealed that F68 has a protective role on survival and differentiation of HTGSCs in long-term cryopreservation.  相似文献   

16.
Human mesenchymal stem cells (MSCs) have emerged as attractive cellular vehicles to deliver therapeutic genes for ex-vivo therapy of diverse diseases; this is, in part, because they have the capability to migrate into tumor or lesion sites. Previously, we showed that MSCs could be utilized to deliver a bacterial cytosine deaminase (CD) suicide gene to brain tumors. Here we assessed whether transduction with a retroviral vector encoding CD gene altered the stem cell property of MSCs. MSCs were transduced at passage 1 and cultivated up to passage 11. We found that proliferation and differentiation potentials, chromosomal stability and surface antigenicity of MSCs were not altered by retroviral transduction. The results indicate that retroviral vectors can be safely utilized for delivery of suicide genes to MSCs for ex-vivo therapy. We also found that a single retroviral transduction was sufficient for sustainable expression up to passage 10. The persistent expression of the transduced gene indicates that transduced MSCs provide a tractable and manageable approach for potential use in allogeneic transplantation.  相似文献   

17.
报道了骨髓间充质干细胞(MSCs)的蛋白质组表达研究。从体外培养的MSCs提取细胞蛋白,经二维电泳分离后用银染方法可检出蛋白点约1600个,选取48个蛋白点进行胶内酶解及质谱分析,经数据库检索成功鉴定了37个蛋白,并对蛋白功能进行初步分析。本实验数据为进一步分析MSCs增殖、分化或凋亡的分子机理提供相关信息。  相似文献   

18.
The authors focused their attention on the establishment of a mesenchymal stem cell(MSC) model for screening traditional Chinese medicines(TCMs) so as to investigate the effects of Shuanglong Formula(SLF) components(Ginsenosides and salvianolic acids) and ingredients(ginsenoside Rb1 and salvianolic acid B) on cardiomyocyte differentiation from MSCs.The SLF components were analyzed and quantified by HPLC-TOF-MS.Cardiomyocyte differentiation was induced by culturing MSCs in the induction medium supplemented with SLF ingredients,SLF components,5-azacytidine(5-aza),5-aza+SLF ingredients and 5-aza+SLF components,respectively,for up to 30 d,and evulated by the expression of Cardiac-specific myosin heavy chain(MHC) and troponin I(TnI) via immunofluoresent staining.Slow growth rate and changed morphology were observed during cardiomyocyte differentiation.After 20 d of induction,differentiating MSCs were positive for MHC and TnI staining.The effects of SLF components were better than those of SLF ingredients.Taken together,SLF can induce the differentiation of MSCs into cardiomyogenic cells in vitro,and MSCs can be used as a powerful tool for screening TCMs.  相似文献   

19.
In the last 10 years, mesenchymal stem cells (MSCs) have emerged as a therapeutic approach to regenerative medicine, cancer, autoimmune diseases, and many more due to their potential to differentiate into various tissues, to repair damaged tissues and organs, and also for their immunomodulatory properties. Findings in vitro and in vivo have demonstrated immune regulatory function of MSCs and have facilitated their application in clinical trials, such as those of autoimmune diseases and chronic inflammatory diseases. There has been an increasing interest in the role of MSCs in allogeneic hematopoietic stem cell transplantation (HSCT), including hematopoietic stem cell engraftment and the prevention and treatment of graft-versus-host disease (GVHD), and their therapeutic potential has been reported in numerous clinical trials. Although the safety of clinical application of MSCs is established, further modifications to improve their efficacy are required. In this review, we summarize advances in the potential use of MSCs in HSCT. In addition, we discuss their use in clinical trials of the treatment of GVHD following HSCT, the immunomodulatory capacity of MSCs, and their regenerative and therapeutic potential in the field of HSCT.  相似文献   

20.
Bone regeneration is still one of the greatest challenges for the treatment of bone defects since no current clinical approach has been proven effective. To develop an alternative biodegradable bone graft material, multiarm polyethylene glycol (PEG) crosslinked hyaluronic acid (HA) hydrogels are synthesized and applied to promote osteogenesis of mesenchymal stem cells (MSCs) with the ultimate goal for bone defect repair. The multiarm PEG‐HA hydrogels provide a significant improvement of alkaline phosphatase (ALP) activity and calcium mineralization of the in vitro encapsulated MSCs under osteogenic condition after 3, 7, and 28 days. In addition, the multiarm PEG‐HA hydrogels also facilitate healing of the cranial bone defects more effectively in a Sprague Dawley rat model after 10 weeks of implantation based on histological evaluations and microcomputed tomography analysis. These promising results set the stage for the development of innovative biodegradable hydrogels to provide a more effective and versatile treatment option for bone regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号