首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ground state electronic properties of metal-exchanged Preyssler heteropolyoxoanions [M(n+)P(5)W(30)O(110)](n-15), in which the encapsulated M(n+) ions are the spherical, diamagnetic ions Na(+), Ca(2+), Sr(2+), Y(3+), La(3+) and Th(4+), are studied using a combination of electrochemical, optical, and NMR experiments. We have designed experiments that focus on the influence of the charge (n) of the encapsulated cations, which themselves have no redox response, and its effect upon the W-O framework MOs. As n increases, the cluster anions accept electrons into their LUMOs with increasing ease, and their lowest-energy LMCT bands reveal a corresponding blue shift, which is indicative of an increase of the LUMO-HOMO energy splitting with increasing n. (183)W NMR spectra are used to identify the atomic origin of the LUMO states, which are shown to be composed primarily of orbitals from the ring of 5 W atoms near M(n+). The cation charge correlates directly and linearly with the half-wave potentials of the first redox couples, the LMCT band energies, and the W chemical shifts. We have combined this suite of experimental results to construct an energy level diagram of the frontier MOs for the Preyssler cluster anions. In so doing, we provide a fundamental perspective that is not otherwise available on the cation's role with specific regard to the electronic behavior of the W-O orbitals. These results are expected to provide benchmarking information as theorists begin to study these large POM systems.  相似文献   

2.
We report the experimental and theoretical characterization of neutral Si(6)X(12) (X = Cl, Br) molecules that contain D(3d) distorted six-member silicon rings due to a pseudo-Jahn-Teller (PJT) effect. Calculations show that filling the intervenient molecular orbitals with electron pairs of adduct suppresses the PJT effect in Si(6)X(12), with the Si(6) ring becoming planar (D(6h)) upon complex formation. The stabilizing role of electrostatic and covalent interactions between positively charged silicon atoms and chlorine atoms of the subject [Si(6)Cl(14)](2-) dianionic complexes is discussed. The reaction of Si(6)Cl(12) with a Lewis base (e.g., Cl(-)) to give planar [Si(6)Cl(14)](2-) dianionic complexes presents an experimental proof that suppression of the PJT effect is an effective strategy in restoring high Si(6) ring symmetry. Additionally, the proposed pathway for the PJT suppression has been proved by the synthesis and characterization of novel compounds containing planar Si(6) ring, namely, [(n)Bu(4)N](2)[Si(6)Cl(12)I(2)], [(n)Bu(4)N](2)[Si(6)Br(14)], and [(n)Bu(4)N](2)[Si(6)Br(12)I(2)]. This work represents the first demonstration that PJT effect suppression is useful in the rational design of materials with novel properties.  相似文献   

3.
The Na(+) ion encapsulated within the Preyssler heteropolyoxoanion, [NaP5W30O110](14-), was exchanged with Pu(III) under hydrothermal conditions to obtain [Pu(III)P5W30O110](12-) (abbreviated [PuPA](12-)) with hybrid electrochemical properties resulting from the combination of the key redox behaviors of the Pu cation and the P-W-O anion. The electroanalytical chemistry of this two-center, multielectron redox system in a 1 M HCl electrolyte shows that Pu(III) is oxidized to Pu(IV) at the half-wave potential, E(1/2), of +0.960 V versus Ag/AgCl, which is 0.197 V more positive than the corresponding electrode potential for the Pu(III) aqua ion also in 1 M HCl, indicating the stabilization of the trivalent Pu cation by its encapsulation in the Preyssler polyoxometalate (POM). This effect is uncommon in actinide-POM chemistry, wherein electrode potential shifts of the opposite nature (to more negative values), leading to the stabilization of the tetravalent ions by complexation, are renowned. Moreover, in cyclic voltammetry measurements of the Pu(III) aqua ion and [PuPA](12-), the peak currents, i(p), for the one-electron Pu(III)/Pu(IV) processes show different dependencies with the scan rate, nu. The former shows proportionality with nu(1/2), indicating freely diffusing species, whereas the latter shows proportionality with nu, indicating a surface-confined one. The first of the five successive two-electron, W-centered reduction processes in [PuPA](12-) occurs at E(1/2) = -0.117 V versus Ag/AgCl, which is 1.077 V less than the E(1/2) for the Pu(III)/Pu(IV) oxidation, thereby providing an experimental, electrochemical measure of the highest occupied molecular orbital/lowest unoccupied molecular orbital energy gap, which compares well with values previously obtained by density-functional theory, complete active space-self consistent field, and post-Hartree-Fock calculations for a series of M(n+)-exchanged systems, [MPA](n-15) for 1 < or = n < or = 4 (Fernandez, J. A.; Lopez, X.; Bo, C.; de Graff, C.; Baerends, E. J.; Poblet, J. M. J. Am Chem. Soc. 2007, 129, 12244-12253). It was not possible to prepare the Np-exchanged Preyssler anion in the manner of [PuPA](12-), because of the instability of tri- and tetravalent Np to oxidation and the formation of the neptunyl(V) ion, which also could not be exchanged for Na(+).  相似文献   

4.
A series of polyoxometalates (POMs)-based coordination polymers, namely, {[Cu(2,3-Me2pz)(2,5-Me2pz)0.5]4(SiW12O40)(2,5-Me2pz)}n (2,3-Me2pz = 2,3-dimethylpyrazine; 2,5-Me2pz = 2,5-dimethylpyrazine; 1), {[Cu2(4,4'-bipy)4(H2O)4](SiW12O40)(H2O)18}n (4,4'-bipy = 4,4'-bipyridine; 2), {[Cu(2-Mepz)1.5]3(PMo12O40)(H2O)3.5}n (2-Mepz = 2-methylpyrazine; 3), {[Ag(2,3-Me2pz)1.5]4(SiW12O40}n (4), {[Cu(pz)1.5]4(SiW12O40)(H2O)3}n (pz = pyrazine; 5), {[Cu(2,3-Me2pz)1.5]4(SiW12O40)}n (6), {[Cu(4,4'-bipy)1.75]4(SiW12O40)(H2O)2}n (7), and {[Cu2(4,4'-bipy)4(H2O)4](SiW12O40)(4,4'-bipy)2(H2O)4}n (8), were synthesized through direct incorporation between POMs and the voids of the 2D network. Crystal structural analysis reveals that the relationship between the size of the void of the 2D network and that of POMs is of key importance for successful synthesis of POMs-based open metal-organic frameworks. Guest replacement shows that the pore size of the framework constructed through direct incorporation between POMs and the voids of the 2D network is very sensitive to guest molecules.  相似文献   

5.
X-Ray absorption spectroscopy was used to probe the coordination of different encrypted cations in the Preyssler anions [M(n+)P5W(30)O(110)]((15-n)-)(M(n+)= Sr2+, Am3+, Eu3+, Sm3+, Y3+, Th4+, U4+ in decreasing order of ionic radius, IR), hereafter abbreviated [M(n+)PA](15-n)-. The increase of the M-W distance and the decrease of the M-P distance with increasing M ionic radius reveal that the M cation is displaced along the C5 axis within the Preyssler cavity. The slight change (0.07 A) of the M-O distance that does not correspond to the IR difference of 0.27 A confirms that the cavity retains its rigidity upon cation substitution. Geometric modeling of the encapsulated cation in the channel was performed for comparison to the EXAFS results. The position of the cation in the cavity was calculated as well as the M-O10, -W5 and -P5 distances. This modeling confirms the cation displacement toward the center of the Preyssler anion as the cation size increases, which is understood in terms of the non-homogenous electrostatic potential present within the cavity. The bond valence model approach was applied to obtain experimental bond valences. Only the bond valence sum (BVS) of Am3+ is close to its actual charge. Sums smaller than the actual valences of the +3 and +4 ions (2.39-2.63 for +3 cations, Y, Sm, Eu; 3.17 and 3.38 for +4 cations, U and Th, respectively) were obtained, and a larger sum (2.89) was obtained for Sr2+. The deviations from the formal M sums of the encapsulated ions are attributed to the rigidity of the Preyssler framework. The tendency toward coordinative unsaturation for electroactive cations, such as Eu3+, is thought to be the driving force for facile reduction. Unlike other inorganic chelating ligands, the Preyssler anion provides a unique redox system to stabilize an electroactive cation in a low oxidation state.  相似文献   

6.
Sandwich-type polyoxometalates (POMs), namely [WZnM2(ZnW9O34)2]q- [M = Mn(II), Ru(III), Fe(III), Pd(II), Pt(II), Zn(II); q = 10-12], are shown to catalyze selectively the epoxidation of chiral allylic alcohols with 30% hydrogen peroxide under mild conditions (ca. 20 degrees C) in an aqueous/organic biphasic system. The transition metals M in the central ring of polyoxometalate do not affect the reactivity, chemoselectivity, or stereoselectivity of the allylic alcohol epoxidation by hydrogen peroxide. Similar selectivities, albeit in significantly lower product yields, are observed for the lacunary Keggin POM [PW11O39]7-, in which a peroxotungstate complex has been shown to be the active oxidizing species. All these features support a tungsten peroxo complex rather than a high-valent transition-metal oxo species operates as the key intermediate in the sandwich-type POM-catalyzed epoxidations. On capping of the hydroxy functionality through acetylation or methylation, no reactivity of these hydroxy-protected substrates [1a(Ac) and 1a(Me)] is observed by these POMs. A template is proposed to account for the marked enhancement of reactivity and selectivity, in which the allylic alcohol is ligated through metal-alcoholate bonding, and the H2O2 oxygen source is activated in the form of a peroxotungsten complex. 1,3-Allylic strain promotes a high preference for the threo diastereomer and 1,2-allylic strain a high preference for the erythro diastereomer, whereas tungsten-alcoholate bonding furnishes high regioselectivity for the epoxidation of the allylic double bond. The estimated dihedral angle alpha of 50-70degrees for the metal-alcoholate-bonded template of the POM/H2O2 system provides the best compromise between 1,2A and 1,3A strain during the oxygen transfer. In contrast to acyclic allylic alcohols 1, the M-POM-catalyzed oxidation of the cyclic allylic alcohols 4 by H2O2 gives significant amounts of enone.  相似文献   

7.
Quantum chemical calculations of the CpMoE(6)MoCp (E = P, As, Sb) triple-decker sandwich complexes showed that E(6) fragments in the central decks of the complexes are planar. Analysis of molecular orbitals involved in vibrational coupling demonstrated that filling the unoccupied molecular orbitals involved in vibronic coupling with electron pairs of Mo atoms suppresses the PJT effect in the CpMoE(6)MoCp (E = P, As, Sb) sandwich, with the E(6) ring becoming planar (D(6h)) upon complex formation. The AdNDP analysis revealed that bonding between C(5)H(5)(-) units and Mo atoms has a significant ionic contribution, while bonding between Mo atoms and E(6) fragment becomes appreciably covalent through the δ-type M → L back-donation mechanism.  相似文献   

8.
We utilize the experience gained in our previous studies on the "chemistry of vibronic coupling" in simple homonuclear and heteronuclear molecules to begin assembling theoretical guidelines for the construction of potentially superconducting solids exhibiting large electron-phonon coupling. For this purpose we analyze similarities between vibronic coupling in isolated molecules and in extended solids. In particular, we study vibronic coupling along the antisymmetric stretch coordinate (Q(as)) in linear symmetric AAA molecules, and along the optical phonon "pairing" mode coordinate (Q(opt)) in corresponding one-dimensional [A]( infinity ) chains built of equidistant A atoms. This is done for a broad range of chemical elements (A). The following similarities between vibronic coupling in molecules and phonon coupling in solids emerge from our calculations: 1) The HOMO/LUMO electronic energy gap in an AAA molecule increases along Q(as), and the highest occupied crystal orbital/lowest unoccupied crystal orbital gap in [A]( infinity ) chain increases along Q(opt). 2) The maximum vibronic instability is invariably obtained for a half-filled, singly occupied molecular orbital in AAA molecules, and for a corresponding half-filled band in [A]( infinity ) chains. 3) The vibronic stability of an AAA molecule increases with a decrease of the AA bond length, as does the vibronic stability of [A]( infinity ) chains (external pressure may lead to a reversal of a Peierls distortion). 4) The high degree of s-p mixing and ionic/covalent forbidden curve crossing dramatically enhance the vibronic instability of both AAA molecules and [A]( infinity ) chains. We also introduce one quantitative relationship: The parameter log(R) (where R is molar refractivity, a parameter used by Herzfeld to prescribe the conditions for the metallization of the elements) correlates with a parameter f(AA) (defined as twice the electronegativity of A, divided by the equilibrium AA bond length), used by two of us previously to describe vibronic coupling in AAA molecules for a broad range of elements (A=halogen, H, or an alkali metal). We hope to illustrate that key chemical aspects of vibronic coupling in simple molecules may thus be profitably transferred to corresponding materials in the solid state.  相似文献   

9.
In situ hydrothermal reduction of Np(VI) to Np(IV) in the presence of methylenediphosphonic acid (C1P2) results in the crystallization of Np[CH2(PO3)2](H2O)2 (NpC1P2-1). Similar reactions have been explored with U(VI) resulting in the isolation of the U(IV) diphosphonate U[CH2(PO3)2](H2O) (UC1P2-1), and the two U(VI) diphosphonates (UO2)2[CH2(PO3)2](H2O)3.H2O (UC1P2-2) and UO2[CH2(PO3H)2](H2O) (UC1P2-3). Single crystal diffraction studies of NpC1P2-1 reveal that it consists of eight-coordinate Np(IV) bound by diphosphonate anions and two coordinating water molecules to create a polar three-dimensional framework structure wherein the water molecules reside in channels. The structure of UC1P2-1 is similar to that of NpC1P2-1 in that it also adopts a three-dimensional structure. However, the U(IV) centers are seven-coordinate with only a single bound water molecule. UC1P2-2 and UC1P2-3 both contain U(VI). Nevertheless, their structures are quite distinct with UC1P2-2 being composed of corrugated layers containing UO 6 and UO 7 units bridged by C1P2; whereas, UC1P2-3 is found as a polar three-dimensional network structure containing only pentagonal bipyramidal U(VI). Fluorescence measurements on UC1P2-2 and UC1P2-3 exhibit emission from the uranyl moieties with classical vibronic fine-structure.  相似文献   

10.
We report the results of a theoretical study of neutral, anionic, and cationic Ga(n)On clusters (n = 4-7), focusing on their ground-state configurations, stability, and electronic properties. The structural motif of these small gallium oxide clusters appears to be a rhombus or a hexagonal ring with alternate gallium and oxygen atoms. With the increase in the cluster size from Ga4O4 to Ga7O7, the ground-state configurations show a transition from planar to quasi-planar to three-dimensional structure that maximizes the number of ionic metal-oxygen bonds in the cluster. The ionization-induced distortions in the ground state of the respective neutral clusters are small. However, the nature of the LUMO orbital of the neutral isomers is found to be a key factor in determining the ordering of the low-lying isomers of the corresponding anionic clusters. A sequential addition of a GaO unit to the GaO monomer initially increases the binding energy, though values of the ionization potential and the electron affinity do not show any systematic variation in these clusters.  相似文献   

11.
Repeated methanolysis of [Zr(3)O](OPr(n)(10) followed by extraction and crystallization from toluene yields material that is X-ray crystallographically indistinguishable from the compound previously formulated as [Zr(13)O(8)](OMe)(36). Elemental analysis and (1)H solution NMR spectroscopy strongly suggest that this material is a mixture of methyltriskaidecazirconates (MTZ) [Zr(13)O(8)](OMe)(x)(OH)(36)(-)(x), x(av) approximately 20, that readily cocrystallize from hydrocarbon solution. These species have the metal-oxygen framework structure reported for [Zr(13)O(8)](OMe)(36), where the 13 zirconium and 32 bridging oxygen atoms comprise a fragment of the fluorite structure adopted by ZrO(2) at elevated temperatures. Ethanolysis of [Zr(3)O](OPr(n)(10) yields its ethyl analogue, [Zr(3)O](OEt)(10). Both trizirconates display temperature-dependent (1)H solution NMR spectra that are interpreted mechanistically in terms of rearrangement mechanisms involving trigonal twists at the octahedral zirconium centers.  相似文献   

12.
Electrochemical and complexation properties of neptunium (Np) are investigated in aqueous perchlorate and nitrate solutions by means of cyclic voltammetry, bulk electrolysis, UV-visible absorption, and Np L(III)-edge X-ray absorption spectroscopies. The redox reactions of Np(III)/Np(IV) and Np(V)/Np(VI) couples are reversible or quasi-reversible, while the electrochemical reaction between Np(III/IV) and Np(V/VI) is irreversible because they undergo structural rearrangement from spherical coordinating ions (Np(3+) and Np(4+)) to transdioxoneptunyl ions (NpO2(n+), n = 1 for Np(V) and 2 for Np(VI)). The redox reaction of the Np(V)/Np(VI) couple involves no structural rearrangement on their equatorial planes in acidic perchlorate and nitrate solutions. A detailed analysis on extended X-ray absorption fine structure (EXAFS) spectra suggests that Np(IV) forms a decaaquo complex of [Np(H2O)10](4+) in 1.0 M HClO4, while Np(V) and Np(VI) exist dominantly as pentaaquoneptunyl complexes, [NpO2(H2O)5](n+) (n = 1 for Np(V) and 2 for Np(VI)). A systematic change is observed on the Fourier transforms of the EXAFS spectra for all of the Np oxidation states as the nitrate concentration is increased in the sample, revealing that the hydrate water molecules are replaced by bidentate-coordinating nitrate ions on the primary coordination sphere of Np.  相似文献   

13.
The di- and tetranuclear metal sandwich-type silicotungstates of Cs10[(gamma-SiW10O36)2{Zr(H2O)}2(mu-OH)2] x 18 H2O (Zr2, monoclinic, C2/c (No. 15), a = 25.3315(8) A, b = 22.6699(7) A, c = 18.5533(6) A, beta = 123.9000(12) degrees, V = 8843.3(5) A(3), Z = 4), Cs10[(gamma-SiW10O36)2{Hf(H2O)}2(mu-OH)2] x 17 H2O (Hf2, monoclinic, space group C2/c (No. 15), a = 25.3847(16) A, b = 22.6121(14) A, c = 18.8703(11) A, beta = 124.046(3) degrees, V = 8974.9(9) A(3), Z = 4), Cs8[(gamma-SiW10O36)2{Zr(H2O)}4(mu4-O)(mu-OH)6] x 26 H2O (Zr4, tetragonal, P4(1)2(1)2 (No. 92), a = 12.67370(10) A, c = 61.6213(8) A, V = 9897.78(17) A(3), Z = 4), and Cs8[(gamma-SiW10O36)2{Hf(H2O)}4(mu4-O)(mu-OH)6] x 23 H2O (Hf4, tetragonal, P4(1)2(1)2 (No. 92), a = 12.68130(10) A, c = 61.5483(9) A, V = 9897.91(18) A(3), Z = 4) were obtained as single crystals suitable for X-ray crystallographic analyses by the reaction of a dilacunary gamma-Keggin silicotungstate K8[gamma-SiW10O36] with ZrOCl2 x 8 H2O or HfOCl2 x 8 H2O. These dimeric polyoxometalates consisted of two [gamma-SiW10O36](8-) units sandwiching metal-oxygen clusters such as [M2(mu-OH)2](6+) and [M4(mu4-O)(mu-OH)6](8+) (M = Zr or Hf). The dinuclear zirconium and hafnium complexes Zr2 and Hf2 were isostructural. The equatorially placed two metal atoms in Zr2 and Hf2 were linked by two mu-OH ligands and each metal was bound to four oxygen atoms of two [gamma-SiW10O36](8-) units. The tertanuclear zirconium and hafnium complexes Zr4 and Hf4 were isostructural and consisted of the adamantanoid cages with a tetracoordinated oxygen atom in the middle, [M4(mu4-O)(mu-OH)6](8+) (M = Zr or Hf). Each metal atom in Zr4 and Hf4 was linked by three mu-OH ligands and bound to two oxygen atoms of the [gamma-SiW10O36](8-) unit. The tetra-nuclear zirconium and hafnium complexes showed catalytic activity for the intramolecular cyclization of (+)-citronellal to isopulegols without formation of byproducts resulting from etherification and dehydration. A lacunary silicotungstate [gamma-SiW10O34(H2O)2](4-) was inactive, and the isomer ratio of isopulegols in the presence of MOCl2 x 8 H2O (M = Zr or Hf) were much different from that in the presence of tetranuclear complexes, suggesting that the [M4(mu4-O)(mu-OH)6](8+) core incorporated into the POM frameworks acts as an active site for the present cyclization. On the other hand, the reaction hardly proceeded in the presence of dinuclear zirconium and hafnium complexes under the same conditions. The much less activity is possibly explained by the steric repulsion from the POM frameworks in the dinuclear complexes.  相似文献   

14.
The vibronic (vibrational-electronic) interactions in the pi-anion radicals of the metalloporphyrins (M=Cr, Mn, Fe, Co, Ni, Cu, and Zn), which show delocalized D4h structures in the neutral states, are discussed using B3LYP density-functional-theory calculations. The B1g and B2g modes of vibration can remove the degenerate 2Eg state of the pi-anion radicals in the D4h symmetric structures to lead to rectangular and diamond D2h distortions, respectively. Calculated vibronic coupling constants demonstrate that the B1g modes of vibration better couple with the degenerate electronic state, leading to the rectangular D2h distortion. In particular, the B1g modes of nu10 and nu11, which have dominant contributions from Calpha-Cm and Cbeta-Cbeta stretching, give large vibronic coupling constants in the pi-anion radicals. The vibronic coupling constant can be viewed as the Jahn-Teller distortion force, and therefore these C-C stretching B1g modes will play a central role in the Jahn-Teller effect of the pi-anion radicals of the metalloporphyrins.  相似文献   

15.
Crystallographic studies of [Fe(SR)(4)](2-) (R is an alkyl or aryl residue) have shown that the Fe(II)S(4) cores of these complexes have (pseudo) D2d symmetry. Here we analyze the possibility that these structures result from a Jahn-Teller (JT) distortion that arises from the e(3z(2) - r(2), x(2) - y(2)) orbital ground state of Fe(II) in T(d)symmetry. Special attention is paid to the influence of the second-nearest neighbors of Fe, which lowers the symmetry and reduces the full JT effect to a smaller, pseudo JT effect (PJT). To estimate the size of the PJT distortion, we have determined the vibronic parameters and orbital state energies for a number of [Fe(SR)(4)](2-) models using density functional theory (DFT). Subsequently, this information is used for evaluating the adiabatic potential surfaces in the space of the JT-active coordinates of the FeS(4) moiety. The surfaces reveal that the JT effect of Fe(II) is completely quenched by the tetrathiolate coordination.  相似文献   

16.
Liu S  Li D  Xie L  Cheng H  Zhao X  Su Z 《Inorganic chemistry》2006,45(20):8036-8040
Reactions of 1:13 heteropoly anions [MV13O38](7-) (M = Mn, Ni) and lanthanide cations Ln3+ (Ln = La, Ce, or Pr) produce five isomorphic compounds, which are crystallized in the triclinic crystal system, space group P1, and formulated as [Ln6(H2O)25(MV12O38)(HMV13O38)].nH2O ((1) Ln = La, M = Mn, and n approximately 31; (2) Ln = Ce, M = Mn, and n approximately 29; (3) Ln = Pr, M = Mn, and n approximately 31; (4) Ln = La, M = Ni, and n approximately 28; (5) Ln = Pr, M = Ni, and n approximately 33). These compounds are two-dimensional polymeric structures constructed by hydrated lanthanide cations and two types of heteropoly anions, [MV13O38](7-) and [MV12O38](12-). In contrast to the previous reported 1:13 heteropoly anions, all with disordered structures, [MV13O38](7-) clusters in 1-5 are non-disordered with a distinct mode. The second kind of anionic cluster [MV12O38](12-) with O(h) symmetry, which consists of 13 entire edge-sharing MO(6) (M = V, Mn or Ni) octahedra, has not been reported hitherto. The emergence of the new cluster may be correlated to the six capping lanthanide cations surrounding it with a stabilization effect. In this paper, the syntheses and structures of the five polymeric lanthanide heteropolyvanadates of manganese(IV) and nickel(IV) have been presented.  相似文献   

17.
A robust, stable and processable family of mononuclear lanthanoid complexes based on polyoxometalates (POMs) that exhibit single-molecule magnetic behavior is described here. Preyssler polyanions of general formula [LnP(5)W(30)O(110)](12-) (Ln(3+) = Tb, Dy, Ho, Er, Tm, and Yb) have been characterized with static and dynamic magnetic measurements and heat capacity experiments. For the Dy and Ho derivatives, slow relaxation of the magnetization has been found. A simple interpretation of these properties is achieved by using crystal field theory.  相似文献   

18.
Peierls distortion path was proved experimentally for dense ZnO nanoparticles prepared by static compression. Electron irradiation caused rock salt (R) to wurtzite (W) transition, following preferential (111)(R)//(0111)(W); [011](R)//[1213](W) and then transformation strain induced (111)(R)//(1011)(W); [011](R)//[0111](W). The two relationships can be rationalized by specified extent of chair- and boat-type Peierls distortions accompanied with band gap opening and intermediate {111}R slip for energetically favorable {111}R/(0111)W match.  相似文献   

19.
Technical grade diethylene-triaminepentakis(methylenephosphonic acid) (I), dihexamethylene-triaminepentakis(methylenephosphonic acid) (II), ethylene-diaminetetrakis(methylenephosphonic acid) (III), hexamethylene-diaminetetrakis(methylenephosphonic acid) (IV), amino-tris(methylenephosphonic acid) (V), hydroxyethyl-aminobis(methylenephosphonic acid) (VI), 1-hydroxyethylidene-1,1-diphosphonic acid (VII), and 2-phosphonobutane-1,2,4-tricarboxylic acid (VIII) were characterized by ion trap mass spectrometry with electrospray ionization (ESI-ITMS). Using the negative ion mode and acid and alkaline media, peak series corresponding to the nominal compounds and to impurities with a lower number of phosphonate groups were distinguished in I-V. Each series was constituted by [M - nH + (n - 1)Na](-) peaks and peaks produced from them by losses of water, H(3)PO(3)(or water plus HPO(2)), and combined losses. For each [M - nH + (n - 1)Na](-) peak, the number of losses coincided with the number of phosphonate groups not bound to sodium ions minus one (the group bearing the charge). Owing to the hydroxyethyl group, the spectrum of VI was dominated by the formation of intermolecular esters, with both losses and gains of water according to [nM - H +/- mH(2)O](-). A series of [M - nH + (n - 1)Na](-) peaks were observed for VII and VIII, showing in the latter case that the carboxylate groups may also form adducts with sodium ions. Losses of water and H(3)PO(3)were observed in VII, whereas losses of water, CO(2), and HPO(3) were seen in VIII. The reaction pathways leading to the production of the observed ions are described. The nominal compounds and the impurities were also separated and identified by capillary electrophoresis with ESI-ITMS detection.  相似文献   

20.
The reaction of M(S2O6) (M = Cu(II), Ni(II), and Co(II)) with 4,4'-bipyridine-N,N'-dioxide (bpdo) results in the formation of novel 3D, 2D, and mononuclear complexes. Complex 1, {[Cu(H2O)(bpdo)2](S2O6)(H2O)}n, is a 2-D wavelike polymer with the Cu(II) ion located on a 2-fold axis and having a distorted square-pyramidal coordination sphere. With Co(II) and Ni(II), 3-D complexes, {[M(bpdo)3](S2O6)(C2H5OH)7}n [M = Co(II) (2), Ni(II) (3)], were obtained. The metal atoms are situated on centers of symmetry and have octahedral environments coordinated to six bpdo molecules. The same reaction in aqueous solution with a metal/ligand ratio of 1:1 results in the formation of mononuclear complexes, {[M(bpdo)(H2O)5](SO4)(H2O)2} [M = Co(II) (4), Ni(II) (5)], accompanied by the decomposition of the dithionate anions S2O6(2-) to sulfate anions SO4(2-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号