首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The superlative electronic properties of graphene suggest its use as the foundation of next generation integrated circuits. However, this application requires precise control of the interface between graphene and other materials, especially the metal oxides that are commonly used as gate dielectrics. Towards that end, organic seeding layers have been empirically shown to seed ultrathin dielectric growth on graphene via atomic layer deposition (ALD), although the underlying chemical mechanisms and structural details of the molecule/dielectric interface remain unknown. Here, confocal resonance Raman spectroscopy is employed to quantify the structure and chemistry of monolayers of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on graphene before and after deposition of alumina with the ALD precursors trimethyl aluminum (TMA) and water. Photoluminescence measurements provide further insight into the details of the growth mechanism, including the transition between layer-by-layer growth and island formation. Overall, these results reveal that PTCDA is not consumed during ALD, thereby preserving a well-defined and passivating organic interface between graphene and deposited dielectric thin films.  相似文献   

2.
We report the use of atomic layer deposition (ALD) coating as a nanobiosensor functionalization strategy for enhanced surface immobilization that may enable higher detection sensitivity. Three kinds of ALD coating films, Al(2)O(3), TiO(2), and SiO(2), were grown on the gallium nitride nanowire (GaN NW) surfaces and characterized with high-resolution transmission electron microscopy (HRTEM) and vacuum Fourier transform infrared spectroscopy (FTIR). Results from HRTEM showed that the thicknesses of ALD-Al(2)O(3), ALD-TiO(2) and ALD-SiO(2) coatings were 4-5 nm, 5-6 nm, and 12-14 nm, respectively. Results from FTIR showed that the OH contents of these coatings were, respectively, ~6.9, ~7.4, and ~9.3 times that of piranha-treated GaN NW. Furthermore, to compare protein attachments on the different surfaces, poly(ethylene glycol) (PEG)-biotin was grafted on the OH-functionalized GaN NW surfaces through active Si-Cl functional groups. Streptavidin protein molecules were then attached to the biotin ends via specific binding. The immobilized streptavidin molecules were examined with scanning electron microscopy, HRTEM, and fluorescent imaging. Results from HRTEM and energy-dispersive X-ray revealed that the nitrogen concentrations on the three ALD coatings were significantly higher than that on the piranha-treated surface. Results from fluorescent imaging further showed that the protein attachments on the Al(2)O(3), TiO(2), and SiO(2) ALD coatings were, respectively, 6.4, 7.8, and 9.8 times that of piranha-treated surface. This study demonstrates that ALD coating can be used as a functionalization strategy for nanobiosensors because it is capable of creating functional groups with much higher density compared to widely used acid modifications, and among the three ALD coatings, ALD-SiO(2) yielded the most promising results in OH content and protein attachment.  相似文献   

3.
In this work, we have investigated the hyperthermal collisions of atomic oxygens with graphene through molecular dynamics simulations using the ReaxFF reactive force field. First, following Paci et al. (J. Phys. Chem. A 2009, 113, 4677 - 4685), 5-eV energetic collisions of atomic oxygen with a 24-atom pristine graphene sheet and a sheet with a single vacancy defect, both functionalized with oxygen atoms in the form of epoxides, were studied. We found that the removal of an O(2) molecule from the surface of the graphene sheet occurs predominantly through an Eley-Rideal-type reaction mechanism. Our results, in terms of the number of occurrences of various reactive events, compared well with those reported by Paci et al. Subsequently, energetic collisions of atomic oxygen with a 25-times-expanded pristine sheet were investigated. The steady-state oxygen coverage was found to be more than one atom per three surface carbon atoms. Under an oxygen impact, the graphene sheet was always found to buckle along its diagonal. In addition, the larger sheet exhibited trampoline-like behavior, as a result of which we observed a much larger number of inelastic scattering events than those reported by Paci et al. for the smaller system. Removal of O(2) from the larger sheet occurred strictly through an Eley-Rideal-type reaction. Investigation of the events leading to the breakup of a pristine unfunctionalized graphene sheet and the effects of the presence of a second layer beneath the graphene sheet in an AB arrangement was done through successive impacts with energetic oxygen atoms on the structures. Breakup of a graphene sheet was found to occur in two stages: epoxide formation, followed by the creation and growth of defects. Events leading to the breakup of a two-layer graphene stack included epoxide formation, transformation from an AB to an AA arrangement as a result of interlayer bonding, defect formation and expansion in the top layer, and finally erosion of the bottom layer. We observed that the breakup of the two-layer stack occurred through a sequential, layer-by-layer, erosion process.  相似文献   

4.
We investigate the effects of carbon coating, with and without nitrogen-dopants, on the electrochemical performance of a promising anode material Li(4)Ti(5)O(12) (LTO) in lithium ion battery applications. The comparative experimental results show that LTO samples coated with nitrogen-doped carbon derived from pyridine and an ionic liquid exhibit significant improvements in rate capability and cycling performance compared with a LTO sample coated by carbon derived from toluene and the pristine LTO sample. For the first time, we construct an atomistic model for the interface between the lithium transition metal oxide and carbon coating layers. Our first-principles calculations based on density functional theory reveal that at this interface there is strong binding between the graphene coating layer and the Ti-terminated LTO surface, which significantly reduces the chemical activity of LTO surfaces and stabilizes the electrode/electrolyte interface, providing a clue to solve the swelling problem for LTO-based batteries. More importantly, electron transfer from the LTO surface to graphene greatly improves the electric conductivity of the interface. Nitrogen-dopants in graphene coatings further increase the interfacial stability and electric conductivity, which is beneficial to the electrochemical performance in energy storage applications.  相似文献   

5.
The presence of nanostructured materials in the workplace is bringing attention to the importance of safe practices for nanomaterial handling. We explored novel fiber containment methods to improve the handling of carbon nanotube (CNT) powders in the laboratory while simultaneously allowing highly uniform and controlled atomic layer deposition (ALD) coatings on the nanotubes, down to less than 4 nm on some CNT materials. Moreover, the procedure yields uniform coatings on milligram quantities of nanotubes using a conventional viscous flow reactor system, circumventing the need for specialized fluidized bed or rotary ALD reactors for laboratory-scale studies. We explored both fiber bundles and fiber baskets as possible containment methods and conclude that the baskets are more suitable for coating studies. An extended precursor and reactant dose and soak periods allowed the gases to diffuse through the fiber containment, and the ALD coating thickness scaled linearly with the number of ALD cycles. The extended dose period produced thicker coatings compared to typical doses on CNT controls not encased in the fibers, suggesting some effects due to the extended reactant dose. Film growth was compared on a range of single-walled NTs, double-walled NTs, and acid-functionalized multiwalled NTs, and we found that ultrathin coatings were most readily controlled on the multiwalled NTs.  相似文献   

6.
Atomic layer deposition (ALD) is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. The self-limiting nature of the chemical reactions ensures precise film thickness control and excellent step coverage, even on 3D structures with large aspect ratios. At present, ALD is mainly used in the microelectronics industry, e.g. for growing gate oxides. The excellent conformality that can be achieved with ALD also renders it a promising candidate for coating porous structures, e.g. for functionalization of large surface area substrates for catalysis, fuel cells, batteries, supercapacitors, filtration devices, sensors, membranes etc. This tutorial review focuses on the application of ALD for catalyst design. Examples are discussed where ALD of TiO(2) is used for tailoring the interior surface of nanoporous films with pore sizes of 4-6 nm, resulting in photocatalytic activity. In still narrower pores, the ability to deposit chemical elements can be exploited to generate catalytic sites. In zeolites, ALD of aluminium species enables the generation of acid catalytic activity.  相似文献   

7.
Anodic aluminum oxide (AAO) membranes were characterized by UV Raman and FT-IR spectroscopies before and after coating the entire surface (including the interior pore walls) of the AAO membranes by atomic layer deposition (ALD). UV Raman reveals the presence of aluminum oxalate in bulk AAO, both before and after ALD coating with Al2O3, because of acid anion incorporation during the anodization process used to produce AAO membranes. The aluminum oxalate in AAO exhibits remarkable thermal stability, not totally decomposing in air until exposed to a temperature >900 degrees C. ALD was used to cover the surface of AAO with either Al2O3 or TiO2. Uncoated AAO have FT-IR spectra with two separate types of OH stretches that can be assigned to isolated OH groups and hydrogen-bonded surface OH groups, respectively. In contrast, AAO surfaces coated by ALD with Al2O3 display a single, broad band of hydrogen-bonded OH groups. AAO substrates coated with TiO2 show a more complicated behavior. UV Raman results show that very thin TiO2 coatings (1 nm) are not stable upon annealing to 500 degrees C. In contrast, thicker coatings can totally cover the contaminated alumina surface and are stable at temperatures in excess of 500 degrees C.  相似文献   

8.
A critical bottleneck for the widespread use of single layer graphene is the absence of a facile method of chemical modification which does not diminish the outstanding properties of the two-dimensional sp(2) network. Here, we report on the direct chemical modification of graphene by photopolymerization with styrene. We demonstrate that photopolymerization occurs at existing defect sites and that there is no detectable disruption of the basal plane conjugation of graphene. This method thus offers a route to define graphene functionality without degrading its electronic properties. Furthermore, we show that photopolymerization with styrene results in self-organized intercalative growth and delamination of few layer graphene. Under these reaction conditions, we find that a range of other vinyl monomers exhibits no reactivity with graphene. However, we demonstrate an alternative route by which the surface reactivity can be precisely tuned, and these monomers can be locally grafted via electron-beam-induced carbon deposition on the graphene surface.  相似文献   

9.
Sol–gel coating of metal oxides on polymer substrates is a useful process to fabricate various organic–inorganic hybrid materials under mild conditions. However, this process is hardly applicable to pristine polyimide (PI) films because their surfaces do not display effective functional groups for metal oxide coatings. In this study, we firstly examined direct sol–gel coating of titania thin layers on unmodified PI film surfaces. The results confirmed homogeneous, ultrathin titania layer coating and showed that the thickness and microscopic morphology of the titania layers were affected by titanium alkoxide concentrations in the spin coating solutions. We next investigated titania layer coating on surface-modified PI films that prepared using alkaline hydrolysis, which generated carboxylic acid groups on the film surfaces. Optimal hydrolysis time was determined using FT-IR spectroscopy and contact angle measurements. After sol–gel titania coating on the hydrolyzed PI film surfaces, the Scotch tape test was conducted to evaluate adhesion strength between the titania layers and PI film surfaces. Morphological observations of the sample surfaces after the tests clearly showed that surface modification of PI films increased titania layer adhesions. Effect of hydrothermal treatments on film formability and adhesion strength between titania-PI film interfaces was also evaluated.  相似文献   

10.
金属衬底上石墨烯的控制生长和微观形貌的STM表征   总被引:2,自引:0,他引:2  
张艳锋  高腾  张玉  刘忠范 《物理化学学报》2012,28(10):2456-2464
目前化学气相沉积(CVD)方法在不同的金属基底上大规模生长获得石墨烯得到了广泛的应用; 同时扫描隧道显微镜(STM)做为一种强大的精细直观的研究手段可以用于表征金属衬底上石墨烯的微观形貌, 指导石墨烯的控制生长. 本文侧重于Cu箔、Pt 箔和Ni 衬底上石墨烯的控制生长、表面微观形貌、表面缺陷态、堆垛形式的阐述, 得到结论: (1) 两种溶碳量较低的金属(Cu, Pt)上, 石墨烯的生长都符合表面催化的生长机制, 同时层间的范德华相互作用也可以诱导双层石墨烯的生长; (2) 衬底粗糙度的增加可以使石墨烯的电子态去简并化, 从而破坏石墨烯面内π键共轭结构, 导致部分碳原子转变为sp3杂化; (3) 原生的褶皱是由于界面热膨胀系数失配所导致; (4) Pt 箔表面石墨烯的平整度要远优于Cu箔表面的石墨烯, 且不同晶面共存的基底对于石墨烯的连续性并没有产生显著的影响.  相似文献   

11.
Pristine graphene is fairly inert chemically, and as such, most application-driven studies use graphene oxide, or reduced graphene oxide. Using substrates to modulate the reactivity of graphene represents a unique strategy in the covalent functionalization of this otherwise fairly inert material. It was found that the reactivity of pristine graphene towards perfluorophenyl azide (PFPA) can be enhanced by a metal substrate on which graphene is supported. Results on the extent of functionalization, defect density, and reaction kinetics all show that graphene supported on Ni (G/Ni) has the highest reactivity toward PFPA, followed by G/Cu and then G/silicon wafer. DFT calculations suggest that the metal substrate stabilizes the physisorbed nitrene through enhanced electron transfer to the singlet nitrene from the graphene surface assisted by the electron rich metal substrate. The G/Ni substantially stabilizes the singlet nitrene relative to G/Cu and the free-standing graphene. The product structure is also predicted to be substrate dependent. These findings open up opportunities to enhance the reactivity of pristine graphene simply through the selection of the substrate. This also represents a new and powerful approach to increasing the reactivity of singlet nitrenes through direct electronic communication with graphene.  相似文献   

12.
Transition‐metal phosphides (TMP) prepared by atomic layer deposition (ALD) are reported for the first time. Ultrathin Co‐P films were deposited by using PH3 plasma as the phosphorus source and an extra H2 plasma step to remove excess P in the growing films. The optimized ALD process proceeded by self‐limited layer‐by‐layer growth, and the deposited Co‐P films were highly pure and smooth. The Co‐P films deposited via ALD exhibited better electrochemical and photoelectrochemical hydrogen evolution reaction (HER) activities than similar Co‐P films prepared by the traditional post‐phosphorization method. Moreover, the deposition of ultrathin Co‐P films on periodic trenches was demonstrated, which highlights the broad and promising potential application of this ALD process for a conformal coating of TMP films on complex three‐dimensional (3D) architectures.  相似文献   

13.
The role of edge-plane-like defects at the open ends of multiwalled carbon nanotubes (MWCNTs) and at hole defects in the tube walls is explored using cyclic voltammetry with two charged redox probes, namely potassium ferrocyanide and hexaamineruthenium(III) chloride in unbuffered aqueous solutions, and one neutral redox probe, norepinephrine, in pH 5.7 buffer. Further, the presence of oxygen-containing functional groups (such as phenol, quinonyl and carboxyl groups), which decorate the edge-plane defect sites on the voltammetric response of the MWCNTs, is also explored. To this end, three different pre-treatments were performed on the pristine MWCNTs made using the arc-discharge method (arc-MWCNTs). These were (a) arc-MWCNTs were subjected to acid oxidation to form acid-MWCNTs—open-ended MWCNTs also possessing numerous hole defects revealing a large number of edge-plane-like sites heavily decorated with surface functional groups; (b) acid-MWCNTs, which were subsequently vacuum-annealed at 900 °C to remove the functional groups but leaving the many undecorated edge-plane-like sites exposed (ann-MWCNTs); (c) ann-MWCNTs, which were subjected to a further vacuum “super-annealing” stage at 1,750 °C (sup-MWCNTs), which caused the hole defects to close and also closed the tube ends, thereby, restoring the original, pristine, almost edge-plane defect-free MWCNTs structure. The results of the voltammetric characterisation of the acid-, ann- and sup-MWCNTs provide further evidence that edge-plane-like sites are the electroactive sites on MWCNTs. The presence of oxygen-containing surface groups is found to inhibit the rate of electron transfer at these sites under the conditions used herein. Finally, the two charged, “standard” redox probes used were found to undergo strong interactions with the oxygen-containing surface groups present. Thus, we advise caution when using these redox probes to attempt to voltammetrically characterise MWCNTs, and by extension, graphitic carbon surfaces.  相似文献   

14.
As atomic layer deposition (ALD) emerges as a method to fabricate architectures with atomic precision, emphasis is placed on understanding surface reactions and nucleation mechanisms. ALD of titanium dioxide with TiCl4 and water has been used to investigate deposition processes in general, but the effect of surface termination on the initial TiO2 nucleation lacks needed mechanistic insights. This work examines the adsorption of TiCl4 on Cl−, H−, and HO− terminated Si(100) and Si(111) surfaces to elucidate the general role of different surface structures and defect types in manipulating surface reactivity of growth and non-growth substrates. The surface sites and their role in the initial stages of deposition are examined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Density functional theory (DFT) computations of the local functionalized silicon surfaces suggest oxygen-containing defects are primary drivers of selectivity loss on these surfaces.  相似文献   

15.
Metal‐support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal‐support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal‐oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2O3 coats, Pt, and a thick Al2O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt–Al2O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2O3 nanotubes retain the stability for hydrogenation reactions of 4‐nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts.  相似文献   

16.
Atomic‐layer deposition (ALD) is a thin‐film growth technology that allows for conformal growth of thin films with atomic‐level control over their thickness. Although ALD is successful in the semiconductor manufacturing industry, its feasibility for nanoparticle coating has been less explored. Herein, the ALD coating of TiO2 layers on ZnO nanoparticles by employing a specialized rotary reactor is demonstrated. The photocatalytic activity and photostability of ZnO nanoparticles coated with TiO2 layers by ALD and chemical methods were examined by the photodegradation of Rhodamine B dye under UV irradiation. Even though the photocatalytic activity of the presynthesized ZnO nanoparticles is higher than that of commercial P25 TiO2 nanoparticles, their activity tends to decline due to severe photocorrosion. The chemically synthesized TiO2 coating layer on ZnO resulted in severely declined photoactivity despite the improved photostability. However, ultrathin and conformal ALD TiO2 coatings (≈0.75–1.5 nm) on ZnO improved its photostability without degradation of photocatalytic activity. Surprisingly, the photostability is comparable to that of pure TiO2, and the photocatalytic activity to that of pure ZnO.  相似文献   

17.
Polypyrrole (PPy)-modified graphene can be used as a support of electrocatalyst in methanol oxidation reaction. In this paper, the Pt/PPy-graphene electrocatalyst is prepared through in situ synthetic method. The structure and electrochemical property of the electrocatalyst were investigated. The results show that the ultrathin water film between graphene and PPy was favorable as the PPy was distributed uniformly on the upper surface of graphene. The PPy-modified graphene enables the formation of Pt nanoparticles having a very narrow size profile centered around 8 nm and a very even spatial distribution on the graphene surface. The Pt/PPy-graphene catalyst exhibits a noticeably higher electrochemical activity in methanol oxidation reaction and performance durability than the Pt/graphene catalyst, and thus, PPy-graphene is a promising alternative catalyst support in direct methanol fuel cells.  相似文献   

18.
The structural, energetic and magnetic properties of Ru nanoparticles deposited on pristine and defective graphene have been thoroughly studied by first-principles based calculations. The calculated binding energy of a Ru(13) nanoparticle on a single vacancy graphene is as high as -7.41 eV, owing to the hybridization between the dsp states of the Ru particles with the sp(2) dangling bonds at the defect sites. Doping the defective graphene with boron would further increase the binding energy to -7.52 eV. The strong interaction results in the averaged d-band center of the deposited Ru nanoparticle being upshifted toward the Fermi level from -1.41 eV to -1.10 eV. Further study reveals that the performance of the nanocomposites against hydrogen, oxygen and carbon monoxide adsorption is correlated to the shift of the d-band center of the nanoparticle. Thus, Ru nanoparticles deposited on defective graphene are expected to exhibit both high stability against sintering and superior catalytic performance in hydrogenation, oxygen reduction reaction and hydrogen evolution reaction.  相似文献   

19.
通过密度泛函理论研究了Ag、Au、Pt原子在完美和点缺陷(包括N掺杂、B掺杂、空位点缺陷)石墨烯上的吸附以及这些体系的界面性质.研究表明Ag、Au不能在完美的石墨烯上吸附,N、B掺杂增强了三种金属与石墨烯之间的相互作用.而空位点缺陷诱发三种金属在石墨烯上具有强化学吸附作用.通过电子结构分析发现,N掺杂增强了Au、Pt与C形成的共价键,而Au、Ag与B形成了化学键.空位点缺陷不仅是金属原子的几何固定点,同时也增加了金属原子和碳原子之间的成键.增强贵金属原子和石墨烯相互作用的顺序是:空位点缺陷>>B掺杂>N掺杂.  相似文献   

20.
For single-walled carbon nanotube (SWNT) field effect transistors, vertical scaling of high kappa dielectrics by atomic layer deposition (ALD) currently stands at approximately 8 nm with a subthreshold swing S approximately 70-90 mV/decade at room temperature. ALD on as-grown pristine SWNTs is incapable of producing a uniform and conformal dielectric layer due to the lack of functional groups on nanotubes and because nucleation of an oxide dielectric layer in the ALD process hinges upon covalent chemisorption on reactive groups on surfaces. Here, we show that by noncovalent functionalization of SWNTs with poly-T DNA molecules (dT40-DNA), one can impart functional groups of sufficient density and stability for uniform and conformal ALD of high kappa dielectrics on SWNTs with thickness down to 2-3 nm. This enables approaching the ultimate vertical scaling limit of nanotube FETs and reliably achieving S approximately 60 mV/decade at room temperature, and S approximately 50 mV/decade in the band-to-band tunneling regime of ambipolar transport. We have also carried out microscopy investigations to understand ALD processes on SWNTs with and without DNA functionalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号