首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new experimental and theoretical approach is presented for the quantitative determination and assignment of the two-photon absorption tensor of fluorophores dissolved in liquid solutions. Two linearly independent time-resolved fluorescence anisotropies and the two-photon polarization ratio were determined from experiments based on using the time-correlated single photon counting technique. The data were analyzed in a global manner under the assumption of prevailing diffusive molecular reorientations and when accounting for the influence of rapid unresolved reorientations. The method has been applied in fluorescence studies of perylene, two-photon excited at 800 nm. The analysis suggests that the two-photon transition is mediated via vibronic coupling including at least two vibrations of different symmetry, and also that the first singlet excited electronic state acts as a dominating intermediate state.  相似文献   

2.
The structural and electronic properties of perylene molecule, dimers, and excimers have been computationally studied. The present work represents the first systematic study of perylene molecule and dimer forms by means of long‐range corrected time‐dependent density functional theory (TDDFT) approaches. Initially, the study explores the photophysical properties of the molecular species. Vertical transitions to many excited singlet states have been computed and rationalized with different exchange‐correlation functionals. Differences between excitation energies are discussed and compared to the absorption spectrum of perylene in gas phase and diluted solution. De‐excitation energy from the relaxed geometry of the lowest excited singlet is in good agreement with the experimental fluorescence emission. Optimization of several coplanar forms of the perylene pair prove that, contrary to generalized gradient approximation (GGA) and hybrid exchange‐correlation functionals, corrected TDDFT is able to bind the perylene dimer in the ground state. Excitation energies from different dimer conformers point to dimer formation prior to photoexcitation. The fully relaxed excimer geometry belongs to the perfectly eclipsed conformation with D2h symmetry. The excimer equilibrium intermolecular distance is shorter than the separation found for the ground state, which is an indication of stronger interchromophore interaction in the excimer state. Excimer de‐excitation energy is in rather good agreement with the excimer band of perylene in concentrated solution. The study also scans the energy profiles of the ground and lowest excited states along several geometrical distortions. The nature of the interactions responsible for the excimer stabilization is explored in terms of excitonic and charge resonance contributions. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Laser-induced fluorescence spectroscopy was carried out on microcrystalline samples of three typical matrices under conditions of matrix-assisted laser desorption/ionization (MALDI). The emitted fluorescence intensity was determined as a function of incident laser fluence and a sublinear increase of the fluorescence intensity with laser fluence was found. A very good fit was obtained when the experimental fluorescence vs. fluence data were compared with a numerical model assuming that under typical MALDI fluence conditions a large fraction of molecules in the excited singlet state undergoes singlet-singlet annihilation. Throughout the fluence range relevant for MALDI, however, the experimental data could not be fit well to a model assuming resonant two-photon absorption as the process depopulating the singlet state. In a separate set of experiments, the singlet lifetimes of several typical crystalline MALDI matrices were determined and found to be considerably shorter than previously reported. While both singlet-singlet annihilation and resonant two-photon absorption have been discussed in the literature as candidates for pathways to primary matrix ion generation in MALDI, the data presented here suggest that singlet-singlet annihilation is the dominant mechanism for depopulating the singlet state in a matrix crystal excited at typical MALDI fluences.  相似文献   

4.
Precise two-photon absorption spectra of the green fluorescent protein (GFP) and the mutants sapphire-GFP (T203I) and enhanced GFP (S65T/F64L), as well as a model compound for the chromophore, 4'-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) were measured by multiplex two-photon absorption spectroscopy. The observed TPA bands of the anionic forms of enhanced GFP and HBDI were significantly shifted to the higher energy compared with the lowest-energy bands in one-photon absorption spectra. This result indicated the existence of a hidden electronic excited state in the vicinity of the lowest excited singlet (S1) state of the anionic form of the GFP chromophore, which is the origin of the blue shift of the two-photon absorption spectra as well as two-photon fluorescence excitation spectra.  相似文献   

5.
A series of multiple [60]fullerene terminated oligo(p-phenylene ethynylene) (OPE) hybrid compounds has been synthesized through a newly developed in situ ethynylation method. Structural and magnetic shielding properties of the highly unsaturated carbon-rich C(60) and OPE scaffolds were characterized by 1D and 2D NMR spectroscopic analyses. Electronic interactions between the [60]fullerenes and the OPE backbones were investigated by UV/Vis spectroscopic and cyclic voltammetry (CV) experiments. Our studies clearly show that although the multiple [60]fullerene groups are connected via pi-conjugated OPE frameworks, they present diminutive electronic interactions in the ground state, and the electronic behavior of the [60]fullerene cages are only affected by the OPE backbones through modest inductive effects. Interestingly, sizable third-order nonlinear optical (NLO) responses (gamma) and enhanced two-photon absorption (TPA) cross-sections (sigma((2))) were determined for the multifullerene-OPE hybrid 31 relative to its OPE precursor from differential optical Kerr effect (DOKE) experiments. Such enhanced NLO performance is presumably due to the occurrence of periconjugation and/or charge transfer effects in the excited state. In addition, comparatively strong excited-state absorption was observed and characterized for OPE pentamer 12. Thus, the use of such fullerene-derivatized conjugated oligomers aids the quest for molecules with large third-order NLO and TPA properties.  相似文献   

6.
Photochemical and photophysical properties were investigated for poly(arylenevinylene)s containing a flexible biphenyl "hinge" unit by applying one-photon (OP) and two-photon (TP) excitation to explore excited-state properties. The poly(arylenevinylene)s were poly[(2,5-dihexyloxy-p-phenylenevinylene)-alt-(4,4'-dihexyloxy-3,3'-biphenylenevinylene)] (1), poly[(2,5-dihexyloxy-p-phenylenevinylene)-alt-(2,2'-dihexyloxy-3,3'-biphenylenevinylene)] (2), and poly[(2,5-dihexyloxy-p-phenylenevinylene)-alt-(2,2'-biphenylenevinylene)] (3). Effective emission quantum yields and related photonic properties were evaluated on a realistic per-chromophore basis using effective conjugation lengths based on the Strickler-Berg relationship. Intramolecular photocyclization was deduced to occur in the one case where the biphenyl molecular connectivity permitted the reaction, based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), heteronuclear multiple-quantum coherence (HMQC)-NMR, and gel-permeation chromatography (GPC) results. The various photoprocesses could be induced by either OP or TP excitation, though the first excited singlet state is the photoactive state. The higher excitation energy of the TP excited state favors indirect population of the S, state by electronic coupling between the TP and OP excited states [lambda(max)TPE (nm): 726; delta (GM): 1=229, 2=215, 3= 109). Photochemical processes occurring from the lowest OP excited state (S1) could therefore also be indirectly induced by TP excitation.  相似文献   

7.
It is possible to study directly the absorption time-profiles of short-lived excited singlet states by sampling the transient excitation spectra for fluorescence from upper states. This approach has many advantages over direct absorption measurements, since the effects of triplet state absorption can be suppressed and the population time-profiles of excited singlet states can be studied in detail. The first direct measurements are reported of singlet state absorption time profiles in a number of aromatic aza- and carbonyl compounds.  相似文献   

8.
The experiments described here demonstrate the use of two-photon excitation (TPE) to sensitize nitric oxide (NO) release from a dye-derivatized iron/sulfur/nitrosyl cluster Fe2(mu-RS)2(NO)4 (Fluor-RSE, RS = 2-thioethyl ester of fluorescein) with near-infrared (NIR) light in the form of femtosecond pulses from a Ti:sapphire laser. TPE at 800 nm leads both to weak fluorescence from the organic chromophore at lambda(max) = 532 nm and to NO labilization from the cluster. Since the emission from the reference compound Fluor-Et (the ethyl ester of fluorescein) under identical conditions (50/50 CH3CN/phosphate buffer (1 mM) at pH 7.4) is considerably more intense, the weaker emission from Fluor-RSE and the NO generation indicate that the fluorescein excited states initially formed by TPE are largely quenched by energy transfer to the cluster core. The two-photon absorption (TPA) cross section of Fluor-RSE at 800 nm was determined to be delta = 63 +/- 7 GM via the TPA photoluminescence technique. This can be compared to the TPA cross section of 36 GM reported for fluorescein dye in pH 11 aqueous solution and of 32 +/- 3 GM for Fluor-Et measured under conditions comparable to those used for Fluor-RSE. Pulse intensity dependence studies showed that the quantity of NO released from the latter as the result of NIR photoexcitation follows a quadratic relationship to excitation intensity, consistent with the expectation for a TPE process. These studies demonstrate the potential utility of a two-photon antenna for sensitization of the photochemical release of an active agent (in this case, NO) from a photoactive pro-drug.  相似文献   

9.
The photophysics of the 1-nitronaphthalene molecular system, after the absorption transition to the first singlet excited state, is theoretically studied for investigating the ultrafast multiplicity change to the triplet manifold. The consecutive transient absorption spectra experimentally observed in this molecular system are also studied. To identify the electronic states involved in the nonradiative decay, the minimum energy path of the first singlet excited state is obtained using the complete active space self-consistent field∕∕configurational second-order perturbation approach. A near degeneracy region was found between the first singlet and the second triplet excited states with large spin-orbit coupling between them. The intersystem crossing rate was also evaluated. To support the proposed deactivation model the transient absorption spectra observed in the experiments were also considered. For this, computer simulations using sequential quantum mechanic-molecular mechanic methodology was used to consider the solvent effect in the ground and excited states for proper comparison with the experimental results. The absorption transitions from the second triplet excited state in the relaxed geometry permit to describe the transient absorption band experimentally observed around 200 fs after the absorption transition. This indicates that the T(2) electronic state is populated through the intersystem crossing presented here. The two transient absorption bands experimentally observed between 2 and 45 ps after the absorption transition are described here as the T(1)→T(3) and T(1)→T(5) transitions, supporting that the intermediate triplet state (T(2)) decays by internal conversion to T(1).  相似文献   

10.
Two modified metallophthalocyanines (MPcs) containing sulfonic naphthoxy substituents were synthesized. The measurements of transient absorption and time-resolved photoluminescence were used to study the ultrafast response and excited state dynamics of two MPcs in dimethyl sulfoxide (DMSO) solution, which were predominantly in the monomeric form. Under excitation at 400 nm, these molecules experience vibrational relaxation to the bottom of the first excited state and then the excitation rapidly converts to the low-lying charge-transfer (CT) state and finally reaches the triplet states. Under excitation at 800 nm, they show a two-photon absorption character, and their excited state dynamics exhibit strong dependence on the probe wavelength. The main results with 400 nm pumping are similar to the results with 800 nm pumping. For p-HPcZn, weak two-photon photoluminescence was also observed with a lifetime of 52 +/- 2 ps. A four-level model was used to illustrate the excited state dynamics of p-HPcZn, while a five-level model was suggested for p-HPcCo molecule.  相似文献   

11.
The photophysics of two symmetric triads, (ZnP)2PBI and (H2P)2PBI, made of two zinc or free-base porphyrins covalently attached to a central perylene bisimide unit has been investigated in dichloromethane and in toluene. The solvent has been shown to affect not only quantitatively but also qualitatively the photophysical behavior. A variety of intercomponent processes (singlet energy transfer, triplet energy transfer, photoinduced charge separation, and recombination) have been time-resolved using a combination of emission spectroscopy and femtosecond and nanosecond time-resolved absorption techniques yielding a very detailed picture of the photophysics of these systems. The singlet excited state of the lowest energy chromophore (perylene bisimide in the case of (ZnP)2PBI, porphyrin in the case of (H2P)2PBI) is always quantitatively populated, besides by direct light absorption, by ultrafast singlet energy transfer (few picosecond time constant) from the higher energy chromophore. In dichloromethane, the lowest excited singlet state is efficiently quenched by electron transfer leading to a charge-separated state where the porphyrin is oxidized and the perylene bisimide is reduced. The systems then go back to the ground state by charge recombination. The four charge separation and recombination processes observed for (ZnP)2PBI and (H2P)2PBI in dichloromethane take place in the sub-nanosecond time scale. They obey standard free-energy correlations with charge separation lying in the normal regime and charge recombination in the Marcus inverted region. In less polar solvents, such as toluene, the energy of the charge-separated states is substantially lifted leading to sharp changes in photophysical mechanism. With (ZnP)2PBI, the electron-transfer quenching is still fast, but charge recombination takes place now in the nanosecond time scale and to triplet state products rather than to the ground state. Triplet-triplet energy transfer from the porphyrin to the perylene bisimide is also involved in the subsequent deactivation of the triplet manifold to the ground state. With (H2P)2PBI, on the other hand, the driving force for charge separation is too small for electron-transfer quenching, and the deactivation of the porphyrin excited singlet takes place via intersystem crossing to the triplet followed by triplet energy transfer to the perylene bisimide and final decay to the ground state.  相似文献   

12.
It is shown that the fluorescence of large organic molecules induced by the two-photon excitation of a picosecond light continuum generated in D2O is a useful and sensitive new technique for two-photon spectroscopic study or excited electronic states of large organic molecules in solution This technique is tested on the first two singlet transitions of rhodamine 6G and on the first singlet transitions (430–630 nm) of naphthalene.  相似文献   

13.
In this report we describe the synthesis of multichromophore arrays consisting of two Bodipy units axially bound to a Sn(IV) porphyrin center either via a phenolate (3) or via a carboxylate (6) functionality. Absorption spectra and electrochemical studies show that the Bodipy and porphyrin chromophores interact weakly in the ground state. However, steady-state emission and excitation spectra at room temperature reveal that fluorescence from both the Bodipy and the porphyrin of 3 are strongly quenched suggesting that, in the excited state, energy and/or electron transfer might occur. Indeed, as transient absorption experiments show, selective excitation of Bodipy in 3 results in a rapid decay (τ ≈ 2 ps) of the Bodipy-based singlet excited state and a concomitant rise of a charge-separated state evolving from the porphyrin-based singlet excited state. In contrast, room-temperature emission studies on 6 show strong quenching of the Bodipy-based fluorescence leading to sensitized emission from the porphyrin moiety due to a transduction of the singlet excited state energy from Bodipy to the porphyrin. Emission experiments at 77 K in frozen toluene reveal that the room-temperature electron transfer pathway observed in 3 is suppressed. Instead, Bodipy excitation in 3 and 6 results in population of the first singlet excited state of the porphyrin chromophore. Subsequently, intersystem crossing leads to the porphyrin-based triplet excited state.  相似文献   

14.
A new approach to two-photon excited photodynamic therapy has been developed. A dendritic array of eight donor chromophores capable of two-photon absorption (TPA) was covalently attached to a central porphyrin acceptor. Steady-state fluorescence measurements demonstrated that the donor chromophores transfer excited-state energy to the porphyrin with 97% efficiency. Two-photon excitation of the donor chromophores at 780 nm resulted in a dramatic increase in porphyrin fluorescence relative to a porphyrin model compound. Enhanced singlet oxygen luminescence was observed from oxygen-saturated solutions of the target compound under two-photon excitation conditions.  相似文献   

15.
We have analyzed singlet and triplet excitation energies in oligothiophenes (up to five rings) using time-dependent density-functional theory (TD-DFT) with different exchange-correlation functionals and compared them with results from the approximate coupled-cluster singles and doubles model (CC2) and experimental data. The excitation energies have been calculated in geometries obtained by TD-DFT optimization of the lowest excited singlet state and in the ground-state geometries of the neutral and anionic systems. TD-DFT methods underestimate photoluminescence energies but the energy difference between singlet and triplet states shows trends with the chain-length similar to CC2. We find that the second triplet excited state is below the first singlet excited state for long oligomers in contrast with the previous assignment of Rentsch et al. (Phys.Chem. Chem. Phys. 1999, 1, 1707). Their photodetachment photoelectron spectroscopy measurements are better described by considering higher triplet excited states.  相似文献   

16.
A detailed dynamical theory of photobleaching by periodical sequences of laser pulses is presented. The theory is used for interpretation of recent experiments with pyrylium salts. Our simulations are based on first-principles simulations of photoabsorption cross-sections and on empirical rate constants. Two competitive channels of photobleaching, namely, photobleaching from the lowest excited singlet and triplet states and from higher excited states, are found to explain different intensity dependences of the photobleaching rates in different samples. The process includes two-photon excitation from the ground state to the first or second excited singlet states and one-photon excitation from the first singlet or triplet states to higher excited states. The fluorescence follows double-exponential dynamics with two characteristic times. The first and the shorter one is the equilibrium settling time between the ground and the lowest triplet states. The second characteristic time, the time of photobleaching, is responsible for the long-term dynamics. The effective rate of photobleaching from the first excited singlet and lowest triplet states depends differently on the irradiance in comparison with the photobleaching in higher states. The first channel is characterized by a quadratic intensity dependence in contrast to the second channel that shows a cubic dependence. The competition between these photobleaching channels is very sensitive to the rate constants as well as to the repetition rate, the pulse duration, and the peak intensity. The double-exponential decay of the fluorescence is explained by the spatial inhomogeneity of the light beam. The findings in this work are discussed in terms of the possibility of using many-photon-induced photobleaching for new three-dimensional read-write devices.  相似文献   

17.
An oligophenyleneethynylene (OPE), 1,4-bis(phenyleneethynyl)-2,5-bis(hexyloxy)benzene (2), is coupled with pyrene to extend the conjugation and allow its use as a light-harvesting molecule [Py-OPE (1)]. The absorption and emission maxima of 1 are red-shifted compared to those of 2. Similar differences in the singlet and triplet excited-state properties are evident. The fluorescence yield of 2 in toluene is 0.53, which is slightly less than the value for the parent OPE (2) of 0.66. The excited singlet and triplet of 1 as characterized from transient absorption spectroscopy exhibit lifetimes of 1.07 ns and 4.0 micros, respectively, in toluene. When 1 was cast as a film on a glass electrode (OTE) and excited with a 387-nm laser pulse, we observed the formation of excitons that decayed within a few picoseconds. When 1 was cast as a film on a SnO2-modified conducting glass electrode (OTE/SnO2), a small fraction of excitons dissociated to produce a long-lived charge-separated state. The role of the SnO2 interface in promoting charge separation was inferred from the photoelectrochemical measurements. Under visible light excitation, the OTE/SnO2 electrode was capable of generating photocurrent (approximately 0.25 mA/cm2) with an incident photon conversion efficiency (IPCE) of approximately 6%.  相似文献   

18.
The excited-state properties of two peryleneimide chromophore end-capped pentaphenylene compounds were investigated in detail using femtosecond transient absorption and single-photon timing experiments. Singlet-singlet annihilation was found to promote one chromophore into a higher excited state and results in the formation of an ultra-short-living intermediate charge-transfer (CT) state in the S(n)-S(1) deactivation pathway. In low-polarity solvents, this CT state is found to be energetically higher than the first excited state and thus cannot be populated via one-photon excitation. The observed CT state decays with a time constant of about 1 ps to form the lowest singlet excited state. These results demonstrate the potential use of the singlet-singlet annihilation as a novel tool in studying reactions occurring in states that are energetically above the S(1).  相似文献   

19.
The equilibrium geometries and harmonic vibrational frequencies of three low-lying triplet excited states of vinyl chloride have been calculated using the state-averaged complete active space self-consistent field (CASSCF) method with the 6-311++G(d,p) basis set and an active space of four electrons distributed in 13 orbitals. Both adiabatic and vertical excitation energies have been obtained using the state-averaged CASSCF and the multireference configuration-interaction methods. The potential-energy surfaces of six low-lying singlet states have also been calculated. While the 3(pi, pi*) state has a nonplanar equilibrium structure, the 3(pi, 3s) and 3(pi, sigma*) states are planar. The calculated vertical excitation energy of the 3(pi, pi*) state is in agreement with the experiment. The singlet excited states are found to be multiconfigurational, in particular, the first excited state is of (pi, 3s) character at the planar equilibrium structure, of (pi, sigma*) as the C-Cl bond elongates, and of (pi, pi*) for highly twisted geometries. Avoided crossings are observed between the potential-energy surfaces of the first three singlet excited states. The absorption spectra of vinyl chloride at 5.5-6.5 eV can be unambiguously assigned to the transitions from the ground state to the first singlet excited state. The dissociation of Cl atoms following 193-nm excitation is concluded to take place via two pathways: one is through (pi, sigma*) at planar or nearly planar structures leading to fast Cl atoms and the other through (pi, pi*) at twisted geometries from which internal conversion to the ground state and subsequent dissociation produces slow Cl atoms.  相似文献   

20.
The excited-state dynamics of an oligomer of polydiacetylene, 2,2,17,17-tetramethyloctadeca-5,9,13-trien-3,7,11,15-tetrayne, dissolved in n-hexane have been studied by femtosecond fluorescence upconversion and polarized transient absorption experiments under one- and two-photon excitation conditions. Spectroscopically monitoring the population relaxation in the excited states in real time results in a distinct time separation of the dynamics. It has been concluded that the observed dynamics can be fully accounted for on the basis of the two lower excited states of the target molecule. The S1 (2(1)Ag) state, which cannot be excited from the ground state with one-photon absorption, is verified to be populated via internal conversion in 200+/-40 fs from the strong dipole-allowed S2 (1(1)Bu) state. The population in the "hot" S1 state subsequently cools with a time constant of 6+/-1 ps and decays back to the ground state with a lifetime of 790+/-12 ps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号