首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model for estimating the spectral period of stimulus frequency otoacoustic emissions (SFOAEs) is presented. The model characterizes the frequency spectrum of an SFOAE in terms of four parameters which can be directly related to cochlear mechanical quantities featuring in the theory of SFOAE generation proposed by Zweig and Shera [J. Acoust. Soc. Am. 98, 2018-2047 (1995)]. The results of applying the parametric model to SFOAEs generated by cochlear models suggest that it gives a sensitive measure of spectral period. It is concluded that the parametric model may be a useful tool for detecting small changes in cochlear function using SFOAE measurements.  相似文献   

2.
Stimulus frequency otoacoustic emission (SFOAE) sound pressure level (SPL) and latency were measured at probe frequencies from 500 to 4000 Hz and probe levels from 40 to 70 dB SPL in 16 normal-hearing adult ears. The main goal was to use SFOAE latency estimates to better understand possible source mechanisms such as linear coherent reflection, nonlinear distortion, and reverse transmission via the cochlear fluid, and how those sources might change as a function of stimulus level. Another goal was to use SFOAE latencies to noninvasively estimate cochlear tuning. SFOAEs were dominated by the reflection source at low stimulus levels, consistent with previous research, but neither nonlinear distortion nor fluid compression become the dominant source even at the highest stimulus level. At each stimulus level, the SFOAE latency was an approximately constant number of periods from 1000 to 4000 Hz, consistent with cochlear scaling symmetry. SFOAE latency decreased with increasing stimulus level in an approximately frequency-independent manner. Tuning estimates were constant above 1000 Hz, consistent with simultaneous masking data, but in contrast to previous estimates from SFOAEs.  相似文献   

3.
Transient-evoked stimulus-frequency otoacoustic emissions (SFOAEs), recorded using a nonlinear differential technique, and distortion-product otoacoustic emissions (DPOAEs) were measured in 17 normal-hearing and 10 hearing-impaired subjects using pairs of tone pips (pp), gated tones (gg), and for DPOAEs, continuous and gated tones (cg). Temporal envelopes of stimulus and OAE waveforms were obtained by narrow-band filtering at the stimulus or DP frequency. Mean SFOAE latencies in normal ears at 2.7 and 4.0 kHz decreased with increasing stimulus level and were larger at 4.0 kHz than latencies in impaired ears. Equivalent auditory filter bandwidths were calculated as a function of stimulus level from SFOAE latencies by assuming that cochlear transmission is minimum phase. DPOAE latencies varied less with level than SFOAE latencies. The ppDPOAEs often had two (or more) peaks separated in time with latencies consistent with model predictions for distortion and reflection components. Changes in ppDPOAE latency with level were sometimes explained by a shift in relative amplitudes of distortion and reflection components. The pp SFOAE SPL within the main spectral lobe of the pip stimulus was higher for normal ears in the higher-frequency half of the pip than the lower-frequency half, which is likely an effect of basilar membrane two-tone suppression.  相似文献   

4.
Otoacoustic emissions (OAEs) evoked by broadband clicks and by single tones are widely regarded as originating via different mechanisms within the cochlea. Whereas the properties of stimulus-frequency OAEs (SFOAEs) evoked by tones are consistent with an origin via linear mechanisms involving coherent wave scattering by preexisting perturbations in the mechanics, OAEs evoked by broadband clicks (CEOAEs) have been suggested to originate via nonlinear interactions among the different frequency components of the stimulus (e.g., intermodulation distortion). The experiments reported here test for bandwidth-dependent differences in mechanisms of OAE generation. Click-evoked and stimulus-frequency OAE input/output transfer functions were obtained and compared as a function of stimulus frequency and intensity. At low and moderate intensities human CEOAE and SFOAE transfer functions are nearly identical. When stimulus intensity is measured in "bandwidth-compensated" sound-pressure level (cSPL), CEOAE and SFOAE transfer functions have equivalent growth functions at fixed frequency and equivalent spectral characteristics at fixed intensity. This equivalence suggests that CEOAEs and SFOAEs are generated by the same mechanism. Although CEOAEs and SFOAEs are known by different names because of the different stimuli used to evoke them, the two OAE "types" are evidently best understood as members of the same emission family.  相似文献   

5.
Click-evoked and stimulus frequency otoacoustic emissions (CEOAEs and SFOAEs, respectively) were studied in humans during and after postural changes. The subjects were tilted from upright to a recumbent position (head down 30 deg) and upright again. Due to the downward posture change, CEOAEs showed a phase increase (80 deg at 1 kHz) and a level decrease (0.5 at 1 kHz), especially for frequency components below 2 kHz. For SFOAEs, the typical ripple pattern showed a positive shift along the frequency axis, which can be interpreted as a phase shift of the inner-ear component of the microphone signal (90 deg at 1 kHz). This also occurred mainly for frequencies below 2 kHz. The altered posture is thought to cause an increase of the intracranial pressure, and consequently of the intracochlear fluid pressure, which results in an increased stiffness of the stapes system. The observed emission changes are in agreement with predictions from a model in which the stiffness of the cochlear windows was altered. For CEOAEs, the time to regain stability after a downward turn was of the order of 30 s, while this took about 20 s after an upward turn. For SFOAEs, this asymmetry was not found to be present (about 11 s, both for up- and downward turns).  相似文献   

6.
In a companion paper [Lineton and Lutman, J. Acoust. Soc. Am. 114, 859-870 (2003)], changes in the spectral period of stimulus frequency otoacoustic emissions (SFOAEs) during self-suppression and two-tone suppression were simulated using a nonlinear cochlear model based on the distributed roughness theory of otoacoustic emission generation [Zweig and Shera, J. Acoust. Soc. Am. 98, 2018-2047 (1995)1. The current paper presents the results of an experimental investigation of SFOAE suppression obtained from 20 human subjects. It was found that, in most subjects, the spectral period increased during self-suppression, but reduced during high-side two-tone suppression. This pattern of results is in close agreement with the predictions of the cochlear model, and therefore strongly supports the distributed roughness theory of Zweig and Shera. In addition, the results suggest that the SFOAE spectral period is sensitive to changes in the state of the cochlear amplifier.  相似文献   

7.
A theoretical framework for describing the effects of nonlinear reflection on otoacoustic emission fine structure is presented. The following models of cochlear reflection are analyzed: weak nonlinearity, distributed roughness, and a combination of weak nonlinearity and distributed roughness. In particular, these models are examined in the context of stimulus frequency otoacoustic emissions (SFOAEs). In agreement with previous studies, it is concluded that only linear cochlear reflection can explain the underlying properties of cochlear fine structures. However, it is shown that nonlinearity can unexpectedly, in some cases, significantly modify the level and phase behaviors of the otoacoustic emission fine structure, and actually enhance the pattern of fine structures observed. The implications of these results on the stimulus level dependence of SFOAE fine structure are also explored.  相似文献   

8.
Previous physiological studies investigating the transfer of low-frequency sound into the cochlea have been invasive. Predictions about the human cochlea are based on anatomical similarities with animal cochleae but no direct comparison has been possible. This paper presents a noninvasive method of observing low frequency cochlear vibration using distortion product otoacoustic emissions (DPOAE) modulated by low-frequency tones. For various frequencies (15-480 Hz), the level was adjusted to maintain an equal DPOAE-modulation depth, interpreted as a constant basilar membrane displacement amplitude. The resulting modulator level curves from four human ears match equal-loudness contours (ISO226:2003) except for an irregularity consisting of a notch and a peak at 45 Hz and 60 Hz, respectively, suggesting a cochlear resonance. This resonator interacts with the middle ear stiffness. The irregularity separates two regions of the middle ear transfer function in humans: A slope of 12 dB/octave below the irregularity suggests mass-controlled impedance resulting from perilymph movement through the helicotrema; a 6-dB/octave slope above the irregularity suggests resistive cochlear impedance and the existence of a traveling wave. The results from four guinea pig ears showed a 6-dB/octave slope on either side of an irregularity around 120 Hz, and agree with published data.  相似文献   

9.
The distributed roughness theory of the origins of spectral periodicity in stimulus frequency otoacoustic emissions (SFOAEs) predicts that the spectral period will be altered by suppression of the traveling wave (TW) [Zweig and Shera, J. Acoust. Soc. Am. 98, 2018-2047 (1995)]. In order to investigate this effect in more detail, simulations of the variation of the spectral period under conditions of self-suppression and two-tone suppression are obtained from nonlinear cochlear models based on this theory. The results show that during self-suppression the spectral period is increased, while during high-side two-tone suppression, the period is reduced, indicating that the detailed pattern of disruption of the cochlear amplifier must be examined if the nonlinear behavior of SFOAEs is to be understood. The model results suggest that the SFOAE spectral period may be sensitive to changes in the state of the cochlear amplifier. A companion paper [Lineton and Lutman, J. Acoust. Soc. Am. 114, 871-882 (2003)] presents experimental data which are compared with the results of the above models with a view to testing the underlying theory of Zweig and Shera.  相似文献   

10.
11.
Stimulus-frequency otoacoustic emissions (SFOAEs) have been measured in several different ways, including (1) nonlinear compression, (2) two-tone suppression, and (3) spectral smoothing. Each of the three methods exploits a different cochlear phenomenon or signal-processing technique to extract the emission. The compression method makes use of the compressive growth of emission amplitude relative to the linear growth of the stimulus. The emission is defined as the complex difference between ear-canal pressure measured at one intensity and the rescaled pressure measured at a higher intensity for which the emission is presumed negligible. The suppression method defines the SFOAE as the complex difference between the ear-canal pressure measured with and without a suppressor tone at a nearby frequency. The suppressor tone is presumed to substantially reduce or eliminate the emission. The spectral smoothing method involves convolving the complex ear-canal pressure spectrum with a smoothing function. The analysis exploits the differing latencies of stimulus and emission and is equivalent to windowing in the corresponding latency domain. Although the three methods are generally assumed to yield identical emissions, no equivalence has ever been established. This paper compares human SFOAEs measured with the three methods using procedures that control for temporal drifts, contamination of the calibration by evoked emissions, and other potential confounds. At low stimulus intensities, SFOAEs measured using all three methods are nearly identical. At higher intensities, limitations of the procedures contribute to small differences, although the general spectral shape and phase of the three SFOAEs remain similar. The near equivalence of SFOAEs measured by compression, suppression, and spectral smoothing indicates that SFOAE characteristics are not mere artifacts of measurement methodology.  相似文献   

12.
DPOAE sources are modeled by intermodulation distortion generated near the f2 place and a reflection of this distortion near the DP place. In a previous paper, inverse fast Fourier transforms (IFFTs) of DPOAE filter functions in normal ears were consistent with this model [Konrad-Martin et al., J. Acoust. Soc. Am. 109, 2862-2879 (2001)]. In the present article, similar measurements were made in ears with specific hearing-loss configurations. It was hypothesized that hearing loss at f2 or DP frequencies would influence the relative contributions to the DPOAE from the corresponding basilar membrane places, and would affect the relative magnitudes of SFOAEs at frequencies equal to f2 and fDP. DPOAEs were measured with f2 = 4 kHz, f1 varied, and a suppressor near fDP. L2 was 25-55 dB SPL (L1 = L2 + 10 dB). SFOAEs were measured at f2 and at 2.7 kHz (the average fDP produced by the f1 sweep) for stimulus levels of 20-60 dB SPL. SFOAE results supported predictions of the pattern of amplitude differences between SFOAEs at 4 and 2.7 kHz for sloping losses, but did not support predictions for the rising- and flat-loss categories. Unsuppressed IFFTs for rising losses typically had one peak. IFFTs for flat or sloping losses typically have two or more peaks; later peaks were more prominent in ears with sloping losses compared to normal ears. Specific predictions were unambiguously supported by the results for only four of ten cases, and were generally supported in two additional cases. Therefore, the relative contributions of the two DPOAE sources often were abnormal in impaired ears, but not always in the predicted manner.  相似文献   

13.
The acoustic properties of a low resistivity porous layer backed by a rigid plate containing periodic rectangular irregularities, creating a multicomponent diffraction gratings, are investigated. Numerical and experimental results show that the structure possesses a total absorption peak at the frequency of the modified mode of the layer, when designed as proposed in the article. These results are explained by an analysis of the acoustic response of the whole structure and especially by the modal analysis of the configuration. When more than one irregularity per spatial period is considered, additional higher frequency peaks are observed.  相似文献   

14.
Mechanical responses in the basal turn of the guinea-pig cochlea were measured with broad-band noise stimuli and expressed as input-output cross-correlation functions. The experiments were performed over the full range of stimulus intensities in order to try to understand the influence of cochlear nonlinearity on frequency selectivity, tuning, signal compression and the impulse response. The results are interpreted within the framework of a nonlinear, locally active, three-dimensional model of the cochlea. The data have been subjected to inverse analysis in order to recover the basilar-membrane (BM) impedance, a parameter function that, when inserted into the (linearized version of that) model, produces a model response that is similar to the measured response. This paper reports details about intensity effects for noise stimulation, in particular, the way the BM impedance varies with stimulus intensity. In terms of the underlying cochlear model, the decrease of the "activity component" in the BM impedance with increasing stimulus level is attributed to saturation of transduction in the outer hair cells. In the present paper this property is brought into a quantitative form. According to the theory [the EQ-NL theorem, de Boer, Audit. Neurosci. 3, 377-388 (1997)], the BM impedance is composed of two components, both intrinsically independent of stimulus level. One is the passive impedance Zpass and the other one is the "extra" impedance Zextra. The latter impedance is to be multiplied by a real factor gamma (0 < or = gamma < or = 1) that depends on stimulus level. This concept about the composition of the BM impedance is termed the "two-component theory of the BM impedance." In this work both impedances are entirely derived from experimental data. The dependence of the factor gamma on stimulus level can be derived by using a unified form of the outer-hair-cell transducer function. From an individual experiment, the two functions Zpass and Zextra are determined, and an approximation (Zpass + gamma Zextra) to the BM impedance constructed. Next, the model response (the "resynthesized" response) corresponding to this "artificial" impedance is computed. The same procedure is executed for several stimulus-level values. For all levels, the results show a close correspondence with the original experimental data; this includes correct prediction of the compression of response amplitudes, the reduction of frequency selectivity, the shift in peak frequency and, most importantly, the preservation of timing in the impulse response. All these findings illustrate the predictive power of the underlying model.  相似文献   

15.
Differential electrical excitation of the auditory nerve   总被引:4,自引:0,他引:4  
The multichannel cochlear prosthesis requires an electrode stimulus configuration which produces a stimulus field spatially localized to each electrode. In this paper, a three-dimensional discrete resistance model of the cochlea was developed which exhibits electrical response properties similar to those observed during electrical stimulation of the cochlea. The model results suggest that the spatial attenuation of current within the cochlea varies greatly in magnitude, depending on the stimulus configuration. In addition, the model suggests that the spatial attenuation of current in both the auditory nerve fiber endings in the organ of Corti and in the myelinated fibers within the cochlear ground paths is different from the voltage attenuation in the scalar fluids. Therefore the efficacy with which a particular stimulus configuration differentially excites local terminal auditory nerve fiber populations cannot be deduced from scalar voltage measurements which have previously been recorded in the literature. Consequently physiological experiments were performed in the cat to measure the current distributions in the terminal nerve fiber region for monopolar and bipolar stimulation of the scala tympani, and also for stimulation between the scala tympani and the scala vestibuli. The mean length constants measured in the basal turn for these stimuli were found to be 12, 3, and 7.5 mm, respectively.  相似文献   

16.
T.S. Li  M.F. Lin  S.C. Chang 《哲学杂志》2013,93(34):4376-4388
The optical absorption spectra of curved graphene nanoribbons exhibit rich dependence on the magnitude and direction of the electric field. The wave functions have spatial symmetry originating from the equivalence of the two sublattices. There exists an optical selection rule caused by the special structure of the Hamiltonian matrix and the wave function spatial symmetry. An electric field may or may not disrupt such spatial symmetry depending on its direction and magnitude. Therefore, the optical selection rule can be controlled. In addition, the two-fold degeneracy of the optical absorption peaks is lifted by the electric field, and the variations of the absorption peak energies with the field are explored.  相似文献   

17.
Low-frequency modulation of distortion product otoacoustic emissions (DPOAEs) was measured from the human ears. In the frequency domain, increasing the bias tone level resulted in a suppression of the cubic difference tone (CDT) and an increase in the magnitudes of the modulation sidebands. Higher-frequency bias tones were more efficient in producing the suppression and modulation. Quasi-static modulation patterns were derived from measuring the CDT amplitude at the peaks and troughs of bias tones with various amplitudes. The asymmetric bell-shaped pattern resembled the absolute value of the third derivative of a nonlinear cochlear transducer function. Temporal modulation patterns were obtained from inverse FFT of the spectral contents around the DPOAE. The period modulation pattern, averaged over multiple bias tone cycles, showed two CDT peaks each correlated with the zero-crossings of the bias tone. The typical period modulation pattern varied and the two CDT peaks emerged with the reduction in bias tone level. The present study replicated the previous experimental results in gerbils. This noninvasive technique is capable of revealing the static position and dynamic motion of the cochlear partition. Moreover, the results of the present study suggest that this technique could potentially be applied in the differential diagnosis of cochlear pathologies.  相似文献   

18.
Cochlear latency has been evaluated in young adults by time-frequency analysis of transient evoked otoacoustic emissions recorded using the nonlinear acquisition mode at different levels of the click stimulus. Objective, even if model-dependent, estimates of cochlear tuning have been obtained from the otoacoustic latency estimates. Transmission-line cochlear models predict that the transient-evoked otoacoustic emission latency is dependent on the stimulus level, because the bandwidth of the cochlear filter (tuning) depends on the local cochlear excitation level due to nonlinear damping. The results of this study confirm the increase of tuning with increasing frequency and show clearly the decrease of latency and tuning with increasing stimulus level. This decrease is consistent with the expected relation between the slowing down of the traveling wave near the tonotopic place and the cochlear excitation amplitude predicted by cochlear models including nonlinear damping. More specifically, these results support the models in which nonlinear damping consists of a quadratic term and a constant positive term.  相似文献   

19.
What type of force does the cochlear amplifier produce?   总被引:1,自引:0,他引:1  
Recent experimental measurements suggest that the mechanical displacement of the basilar membrane (BM) near threshold in a viable mammalian cochlea is greater than 10(-8) cm, for a stimulus sound-pressure level at the eardrum of 20 microPa. The associated response peak is very sensitive to the physiological condition of the cochlea. In the formulation of all recent cochlear models, it has been explicitly assumed that this peak is produced by the cochlear amplifier injecting a large amount of energy into the cochlea, thereby altering the real component of the BM impedance. In this paper, a new cochlear model is described which produces a realistic response by assuming that the cochlear amplifier force acts at a phase such that the main effect is to reduce the imaginary component of the BM impedance. In this new model, the magnitude of the cochlear amplifier force required to produce a realistic response is much smaller than in the previous models. It is suggested that future experimental investigations should attempt to determine both the magnitude and the phase of the forces associated with the cochlear amplifier.  相似文献   

20.
Tone languages differ from English in that the pitch pattern of a single-syllable word conveys lexical meaning. In the present study, dependence of tonal-speech perception on features of the stimulation was examined using an acoustic simulation of a CIS-type speech-processing strategy for cochlear prostheses. Contributions of spectral features of the speech signals were assessed by varying the number of filter bands, while contributions of temporal envelope features were assessed by varying the low-pass cutoff frequency used for extracting the amplitude envelopes. Ten normal-hearing native Mandarin Chinese speakers were tested. When the low-pass cutoff frequency was fixed at 512 Hz, consonant, vowel, and sentence recognition improved as a function of the number of channels and reached plateau at 4 to 6 channels. Subjective judgments of sound quality continued to improve as the number of channels increased to 12, the highest number tested. Tone recognition, i.e., recognition of the four Mandarin tone patterns, depended on both the number of channels and the low-pass cutoff frequency. The trade-off between the temporal and spectral cues for tone recognition indicates that temporal cues can compensate for diminished spectral cues for tone recognition and vice versa. An additional tone recognition experiment using syllables of equal duration showed a marked decrease in performance, indicating that duration cues contribute to tone recognition. A third experiment showed that recognition of processed FM patterns that mimic Mandarin tone patterns was poor when temporal envelope and duration cues were removed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号