首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cationic surfactants are important for a wide range of applications, including controlled drug delivery systems, emulsifiers, and chemical mechanical polishing. It is therefore important to better understand surfactant structure and properties at the solid-liquid interface. Here, classical molecular dynamics simulations with empirical potentials are used to compare the structures and mechanical properties of cationic surfactant micelles at hydrophobic (graphite) and hydrophilic (silica) surface-water interfaces. In particular, the morphology of monolayers and bilayers of C12TAB (n-dodecyltrimethylammoniumbromide) at these interfaces, and their responses to atomic force microscopy indentation, are examined. The simulations predict that surfactant monolayers and bilayers on silica evolve into a spherical micelle structure, in agreement with theoretical models of surfactant morphology. In contrast, surfactant monolayers on graphite evolve into a hemi-cylindrical structure, in agreement with experimental findings. In the simulated indentation of the micelle/silica system, the spherical micelle breaks apart and forms a surfactant monolayer. The indentation force curve has a maximum value of 2.25 nN. On the other hand, the simulated indentation of the micelle/graphite system causes the hemi-cylindrical micelle structure to break apart and the surfactant tails to wrap around the graphite indenter. The indentation force curve has a maximum value of 13 nN.  相似文献   

2.
Surfactant molecules self-assemble in aqueous solutions to form various micellar structures such as spheres, rods, or lamellae. Although phase transitions in surfactant solutions have been studied experimentally, their molecular mechanisms are still not well understood. In this work, we show that molecular dynamics (MD) simulations using the coarse-grained (CG) MARTINI force field and explicit CG solvent, validated against atomistic MD studies, can accurately represent micellar assemblies of cetyltrimethylammonium chloride (CTAC). The effect of salt on micellar structures is studied for aromatic anionic salts, e.g., sodium salicylate, and simple inorganic salts, e.g., sodium chloride. Above a threshold concentration, sodium salicylate induces a sphere to rod transition in the micelle. CG MD simulations are shown to capture the dynamics of this shape transition and support a mechanism based on the reduction in the micelle-water interfacial tension induced by the adsorption of the amphiphilic salicylate ions. At the threshold salt concentration, the interface is nearly saturated with adsorbed salicylate ions. Predictions of the effect of salt on the micelle structure in different CG solvent models, namely, single-site standard water and three-site polarizable water, show qualitative agreement. This suggests that phase transitions in aqueous micelle solutions could be investigated by using standard CG water models which allow for 3 orders of magnitude reduction in the computational time as compared to that required for atomistic MD simulations.  相似文献   

3.
Associating polymers are hydrophilic long-chain molecules containing a small number of hydrophobic groups, and act as flocculants in aqueous suspensions. The effects of associating and nonassociating polymers on viscosity behavior are studied for silica suspensions. Since flocculation is induced by polymer bridging, the viscosity behavior is converted from Newtonian to shear-thinning profiles. The additions of surfactant cause an increase in viscosity for suspensions prepared with associating polymer, whereas the flow behavior of suspensions with nonassociating polymer is not significantly influenced. In adsorption of associating polymers onto silica particles, the chain may adopt a conformation with a water-soluble backbone attached to the particle surfaces. The hydrophobic groups extending from the chains adsorbed onto different particles can form a micelle by association with surfactant. Therefore, the bridging flocculation is enhanced by surfactant. The cooperative micellar formation between associating polymer and surfactant is responsible for viscosity increase in suspensions.  相似文献   

4.
Lattice Monte Carlo simulations are used to study the effect of nonionic surfactant concentration and CO2 density on the micellization and phase equilibria of supercritical CO2/surfactant systems. The interaction parameter for carbon dioxide is obtained by matching the critical temperature of the model fluid with the experimental critical temperature. Various properties such as the critical micelle concentration and the size, shape, and structure ofmicelles are calculated, and the phase diagram in the surfactant concentration-CO2 density space is constructed. On increasing the CO2 density, we find an increase in the critical micelle concentration and a decrease in the micellar size; this is consistent with existing experimental results. The variation of the micellar shape and structure with CO2 density shows that the micelles are spherical and that the extension of the micellar core increases with increasing micellar size, while the extension of the micellar corona increases with increasing CO2 density. The predicted phase diagram is in qualitative agreement with experimental phase diagrams for nonionic surfactants in carbon dioxide.  相似文献   

5.
Control of the size and agglomeration of micellar systems is important for pharmaceutical applications such as drug delivery. Although shape-related transitions in surfactant solutions are studied experimentally, their molecular mechanisms are still not well understood. In this study, we use coarse-grained molecular dynamics simulations to describe micellar assemblies of pentaethylene glycol monododecyl ether (C(12)E(5)) in aqueous solution at different concentrations. The obtained size and aggregation numbers of the aggregates formed are in very good agreement with the available experimental data. Importantly, increase of the concentration leads to a second critical micelle concentration where a transition to rod-like aggregates is observed. This transition is quantified in terms of shape anisotropy, together with a detailed structural analysis of the micelles as a function of aggregation number.  相似文献   

6.
Coarse-grained, implicit solvent molecular simulations have been conducted to investigate the structure and interactions of L64 Pluronic micelles in aqueous solutions. Simulations of an L64 solution beginning with monodisperse micelles (aggregation number Nagg = 40 chains) resulted in a narrow Gaussian distribution of Nagg centered around 40. While not fully equilibrated, this distribution supports the supposition that L64 micelles with Nagg = 40 are representative of the conditions considered and model employed. Detailed analysis of intramicellar monomers distribution and micelle shapes revealed that L64 micelles have a scalene ellipsoidal shape. Additional simulations of solutions containing 125 micelles constrained to have Nagg = 40 at polymer volume fractions of 0.024 and 0.110 were performed to study micelle-micelle structure factor, single micelle form factor, and total scattering intensity. The ability of various models utilized in analysis of scattering profiles in micellar solutions to describe the structure of the model L64 solutions was investigated. Investigation of the potential of mean force between two micelles reveals that the interactions between micelles are repulsive but on a length scale smaller than the mean micelle diameter, indicating that the micellar shape fluctuations are important in determining intermicellar interactions.  相似文献   

7.
Amphiphilic cholesteryl 2,6-di-O-methyl-β-cyclodextrins (chol-DIMEB) can self-aggregate into spherical micelles of noteworthy potential for drug delivery. All-atom molecular dynamics simulations of chol-DIMEB micelles consisting of 3-24 monomers have been performed in aqueous solution. chol-DIMEB exhibits a pronounced tendency to self-assemble into core-shell structures. van der Waals interactions within the cholesteryl nucleus constitute the main driving force responsible for the formation of the micelle. The calculated radii of the hydrophobic core and of the hydrophilic shell for the micellar structure formed by 24 monomers agree well with the experiment. The cyclodextrin moieties are found to be exposed toward the aqueous medium and possess the appropriate flexibility to capture drugs in an effective fashion. Analysis of the solvent accessible surface area and hydration number indicates that the micelles are highly hydrosoluble species and can, therefore, enhance significantly the aqueous solubility of lipophilic drugs. In addition, the spatial structure of the micelles is suggestive of multiple potential drug binding sites. The present contribution unveils how micelles endowed with specific characteristics can form, while opening exciting perspectives for the design of novel micellar nanoparticles envisioned to be drug carriers of high potential.  相似文献   

8.
We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations.  相似文献   

9.
A first theoretical study of surfactant-stabilized carbon nanotube dispersions is presented. Density functional theory is used to compute potential of mean force between nanotubes in an aqueous solution of cationic surfactant n-decyltrimethylammonium chloride. In agreement with experimental results, it is found that stable dispersions can be prepared for surfactant bulk concentrations below the critical micelle concentration. Computed density profiles of head and tail segments indicate that surfactants adsorb on nanotube surfaces in a random fashion rather than form cylindrical micelles, which is also in agreement with recent small-angle neutron scattering measurements.  相似文献   

10.
We have investigated the self-organization structures of perfluoroalkyl sulfonamide ethoxylate, C(8)F(17)SO(2)N(C(3)H(7))(CH(2)CH(2)O)(10)H, a nonionic fluorinated surfactant in aqueous system by small-angle X-ray scattering (SAXS) technique. Structural modulation of the nonionic fluorinated micelle induced by temperature change, surfactant concentration, and the added fluorinated oils have been systematically studied. The SAXS data were analyzed by the indirect Fourier transformation (IFT), and the generalized indirect Fourier transformation (GIFT) depending on the volume fraction of the surfactant. Various plausible classical model calculations have been performed to confirm the consistency of the GIFT analysis of the SAXS data. Upon successive increase in temperature, the cylindrical micelles formed at lower temperatures undergo a continuous one-dimensional growth and ultimately near the cloud point an indication of flat planar like structural pattern is observed. The evolution in structure of particle near the demixing temperature may be due to onset of attractive interactions. The shape and size of the micelle is apparently unaffected by changing the surfactant concentration from 1 to 5 wt% at 25 degrees C. Nevertheless, addition of small amount of perfluoropolyether (PFPE) oil, of structure F(CF(2)CF(2)CF(2)O)(n)CF(2)CF(2)COOH (n approximately 21) modulate the micellar shape and size. Long cylindrical micelles eventually transform into globular like particles. The onset cylinder-to-sphere transition in the structure of micelles in the surfactant/water/oil system is probably due to amphiphilic nature of the oil, which tends to increase the spontaneous curvature. The lipophilic part of the oil tends to reside in the micellar core, whereas, the hydrophilic part goes close to the polar head group of the surfactant so that effective cross-sectional area per surfactant molecules increases and as a result spherical micelles tend to form. Perfluorodecalin (PFD) also decreases size of the micelles but its effect is poor compared to the PFPE oil.  相似文献   

11.
The solubility of a water-insoluble dye, Sudan Red B, in aqueous sodium halide solutions of tetradecyl-, cetyl-, and stearyltrimethylammonium halides has been measured at different surfactant and salt concentrations, and the dependence of solubilization properties on alkyl chain length has been discussed with reference to the micelle size and shape. At low ionic strengths where only spherical micelles exist, the solubilization power of micellar surfactant slightly increases with increasing the ionic strength, but it sharply increases at high ionic strengths above the threshold value of sphere-rod transition. However, the solubilization power becomes independent of the ionic strength, if their rodlike micelles are sufficiently long. The solubilization capacity increases linearly with increasing the molecular weight, almost independent of counterion species, but the rod-like micelle has a higher solubilization capacity than the spherical micelle. The solubilization capacity is larger for a surfactant with longer alkyl chain, indicating that the dye is solubilized more readily in a larger hydrophobic core. The solubilized dye is situated in a rodlike micelle of alkyltrimethylammonium halides, on average, 4.5–7.5 nm apart from each other.  相似文献   

12.
Self-assembled Gemini surfactant film-mediated dispersion stability   总被引:1,自引:0,他引:1  
The force-distance curves of 12-2-12 and 12-4-12 Gemini quaternary ammonium bromide surfactants on mica and silica surfaces obtained by atomic force microscopy (AFM) were correlated with the structure of the adsorption layer. The critical micelle concentration was measured in the presence or absence of electrolyte. The electrolyte effect (the decrease of CMC) is significantly more pronounced for Gemini than for single-chain surfactants. The maximum compressive force, F(max), of the adsorbed surfactant aggregates was determined. On the mica surface in the presence of 0.1 M NaCl, the Gemini micelles and strong repulsive barrier appear at surfactant concentrations 0.02-0.05 mM, which is significantly lower than that for the single C(12)TAB (5-10 mM). This difference between single and Gemini surfactants can be explained by a stronger adsorption energy of Gemini surfactants. The low concentration of Gemini at which this surfactant forms the strong micellar layer on the solid/solution interface proves that Gemini aggregates (micelles) potentially act as dispersing agent in processes such as chemical mechanical polishing or collector in flotation. The AFM force-distance results obtained for the Gemini surfactants were used along with turbidity measurements to determine how adsorption of Gemini surfactants affects dispersion stability. It has been shown that Gemini (or two-chain) surfactants are more effective dispersing agents, and that in the presence of electrolyte, the silica dispersion stability at pH 4.0 can also be achieved at very low surfactant concentrations ( approximately 0.02 mM).  相似文献   

13.
Micellar liquid chromatography makes use of aqueous solutions or aqueous‐organic solutions containing a surfactant, at a concentration above its critical micelle concentration. In the mobile phase, the surfactant monomers aggregate to form micelles, whereas on the surface of the nonpolar alkyl‐bonded stationary phases they are significantly adsorbed. If the mobile phase contains a high concentration of organic solvent, micelles break down, and the amount of surfactant adsorbed on the stationary phase is reduced, giving rise to another chromatographic mode named high submicellar liquid chromatography. The presence of a thinner coating of surfactant enhances the selectivity and peak shape, especially for basic compounds. However, the risk of full desorption of surfactant is the main limitation in the high submicellar mode. This study examines the adsorption of the anionic surfactant sodium dodecyl sulfate under micellar and high submicellar conditions on a C18 column, applying two methods. One of them uses a refractive index detector to obtain direct measurements of the adsorbed amount of sodium dodecyl sulfate, whereas the second method is based on the retention and peak shape for a set of cationic basic compounds that indirectly reveal the presence of adsorbed monomers of surfactant on the stationary phase.  相似文献   

14.
The crossing dynamics at an entanglement point of surfactant threadlike micelles in an aqueous solution was studied using a mesoscopic simulation method, dissipative particle dynamics, with a coarse-grained surfactant model. The possibility of a phantom crossing, which is the relaxation mechanism for the pronounced viscoelastic behavior of surfactant threadlike micellar solution, was investigated. When two threadlike micelles were encountered at an entanglement point under the condition close to thermal equilibrium, they fused to form a four-armed branch point. Then, a phantom crossing reaction occurred occasionally, or one micelle was cut down at the branch point. Increasing the repulsive forces between hydrophilic parts of the surfactants, fusion occurred less and the threadlike micelle was frequently broken down at an entanglement point. In these three schemes (a phantom crossing cut down at the branch point, and break down at the entanglement point), the breakage occurs at somewhere along the threadlike micelle. The breakage is considered as an essential process in the relaxation mechanism, and a phantom crossing can be seen as a special case of these processes. To explain the experimental evidence that a terminal of threadlike micelles is scarcely observed, a mechanism was also proposed where the generated terminal merges into the connected micelle part between two entanglement points due to the thermal motion.  相似文献   

15.
This work investigates the synergistic effects of a neutral polymer and an anionic surfactant on depletion forces as a function of bulk polymer and bulk surfactant concentration. In this work, we measure the force between a silica particle and a silica plate in aqueous solutions of the polymer and the surfactant using atomic force microscopy. The polymer is the triblock copolymer poly(ethylene oxide-block-propylene oxide-block-ethylene oxide) (Pluronic F108), and the surfactant is sodium dodecyl sulfate (SDS). In F108-only solutions, the force between the silica particle and the silica plate is primarily repulsive for polymer concentrations ranging from 200 to 10 000 ppm. In SDS-only solutions, the net force between the silica surfaces is repulsive at all separations for concentrations below 16 mM SDS and is attractive with a structural force character above 16 mM SDS. When both F108 and SDS are present in the solution, a net attractive force is observed at SDS concentrations as low as 4 mM, a factor of 2 below the critical micelle concentration (cmc). We attribute this synergistic effect to the complexation of F108 with SDS in bulk solution at a critical aggregation concentration (cac) that is less than the cmc, producing a relatively large, charged complex that creates a significant depletion force between the particle and plate.  相似文献   

16.
In micellar solutions of sodium dodecyl sulfate, as the concentration of surfactants increases, the spheroid shape of the micelles changes from almost spherical to ellipsoidal with increasing ratio of half-axes ratio, and further the transition to cylindrical micelles occurs. The micelles in an aqueous solution can directly contact (compact aggregates) or be separated from one another by layers of intermicellar medium (periodical colloid structures). In the latter case, the thickness of the layer can significantly exceed the micelle size, and then no mutual correlation in micelle arrangement is observed. According to the data of small-angle X-ray scattering, the relationship between the surfactant concentration and formation of “quasi-crystalline” micellar structure is nonlinear, which can be due to both micelle aggregation processes and nonuniformity of their structure. The possible influence of ordered micellar structures on the diffusion mobility of micelles is shown.  相似文献   

17.
Brownian dynamics simulations for a coarse-grained model have been performed to study the formation of micelles from bile salts and mixed micelles with dipalmitoyl-phosphatidylcholine (DPPC) in aqueous solutions. The particular association behavior of bile salts as facial surfactants was shown to be caused by their special molecular architecture with a hydrophilic and a hydrophobic side. The experimentally observed smooth transition into the micellar region with increasing concentration is reproduced. Micelle size distributions have been evaluated at different bile salt concentrations. Typical structures of pure bile salt micelles could be identified. The composition and the structure of mixed micelles have been studied in their dependence on the bile salt/lipid concentration ratio in the aqueous solution. We have found that the bile salt fraction in the mixed micelles increases considerably with increasing bile salt/lipid concentration ratio and decreasing micelle size. The structural and thermodynamic features of micelle formation in the aqueous bile salt solutions with DPPC, which we have studied with the coarse-grained model, are in good qualitative agreement with experimental findings.  相似文献   

18.
Coarse-grained molecular dynamics simulations have been performed to study the self-assembly of polymer, polyacrylamide (PAM) and surfactant, sodium dodecylsulfate (SDS) in aqueous solution. Our simulations revealed that PAM curled into clusters in the absence of SDS, while it was stretched if SDS was added. For the SDS-PAM complexes, the aggregate formation process can be divided into three stages: firstly, PAM quickly absorbs some SDS monomers until the radius of gyration (Rg) of polymer reaches a minimum; then, PAM stretches and the Rg of PAM increases due to more and more adsorbed SDS; ultimately, the commonly accepted "necklace" structure is formed with PAM located at the interface of the hydrophobic and hydrophilic regions of the SDS micelle. The main driving force for the association was hydrophobic interactions between the polymer backbone and the surfactant hydrophobic tails. As the concentration of SDS increased, the Rg of PAM increased up to a maximum, indicating the polymer was saturated with surfactant.  相似文献   

19.
Hydrophilic silicon wafers are studied against aqueous solutions of hexadecyl trimethyl ammonium bromide (CTAB) at concentrations between 0.05 mM up to 1 mM (CMC). AFM studies show that nanobubbles are formed at concentrations up to 0.4 mM. From 0.5 mM upward, no bubbles could be detected. This is interpreted as the formation of hydrophobic domains of surfactant aggregates, becoming hydrophilic at about 0.5 mM. The high contact angle of the nanobubbles (140-150° through water) indicates that the nanobubbles are located on the surfactant domains. A combined imaging and colloidal probe AFM study serves to highlight the surfactant patches adsorbed at the surface via nanobubbles. The nanobubbles have a diameter between 30 and 60 nm (after tip deconvolution), depending on the surfactant concentration. This corresponds to a Laplace pressure of about 30 atm. The presence of the nanobubbles is correlated with force measurements between a silica probe and a silicon wafer surface. The study is a contribution to the better understanding of the short-range attraction between hydrophilic surfaces exposed to a surfactant solution.  相似文献   

20.
A molecular-thermodynamic theory is developed to model the micellization of fluorocarbon surfactants in aqueous solutions, by combining a molecular model that evaluates the free energy of micellization of fluorocarbon surfactant micelles with a previously developed thermodynamic framework describing the free energy of the micellar solution. In the molecular model of micellization developed, a single-chain mean-field theory is combined with an appropriate rotational isomeric state model of fluorocarbon chains to describe the packing of the fluorocarbon surfactant tails inside the micelle core. Utilizing this single-chain mean-field theory, the packing free energies of fluorocarbon surfactants are evaluated and compared with those of their hydrocarbon analogues. We find that the greater rigidity of the fluorocarbon chain promotes its packing in micellar aggregates of low curvatures, such as bilayers. In addition, the mean-field approach is utilized to predict the average conformational characteristics (specifically, the bond order parameters) of fluorocarbon and hydrocarbon surfactant tails within the micelle core, and the predictions are found to agree well with the available experimental results. The electrostatic effects in fluorocarbon ionic surfactant micelles are modeled by allowing for counterion binding onto the charged micelle surface, which accounts explicitly for the effect of the counterion type on the micellar solution properties. In addition, a theoretical formulation is developed to evaluate the free energy of micellization and the size distribution of finite disklike micelles, which often form in the case of fluorocarbon surfactants. We find that, compared to their hydrocarbon analogues, fluorocarbon surfactants exhibit a greater tendency to form cylindrical or disklike micelles, as a result of their larger molecular volume as well as due to the greater conformational rigidity of the fluorocarbon tails. The molecular-thermodynamic theory developed is then applied to several ionic fluorocarbon surfactant-electrolyte systems, including perfluoroalkanoates and perfluorosulfonates with added LiCl or NH(4)Cl, and various micellar solution properties, including critical micelle concentrations (cmc's), optimal micelle shapes, and average micelle aggregation numbers, are predicted. The predicted micellar solution properties agree reasonably well with the available experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号