首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light scattering is a useful diagnostic tool for characterization of particles. Direct scattering measurements for arbitrarily shaped micro-scale particles is difficult due to small-scale limitations. Microwave analogy is a convenient approach to realize such measurements as it enables realization of analogous experiments with larger model particles in a spectral domain where wavelengths are on centimeter scale. In the present study a test model analogous to light scattering by a micro-scale aggregate of dielectric spheres was constructed and experimentally characterized in the microwave regime. Measured amplitude and phase of the scattered field were compared with theoretical predictions obtained from quasi-exact multiple-scattering T-matrix method and discrete dipole approximation (DDA). Excellent agreement demonstrates the validities of both the experiment and the models.  相似文献   

2.
The problem of sound diffraction by an absorbing sphere due to a monopole point source was investigated. The theoretical models were extended to consider the case of sound diffraction by an absorbing sphere with a locally reacting boundary or an extended reaction boundary placed above an outdoor ground surface of finite impedance. The separation of variables techniques and appropriate wave field expansions were used to derive the analytical solutions. By adopting an image method, the solutions could be formulated to account for the multiple scattering of sound between the sphere and its image near a flat acoustically hard or an impedance ground. The effect of ground on the reflected sound fields was incorporated in the theoretical model by employing an approximate analytical solution known as the Weyl-van der Pol formula. An approximation solution was suggested to determine the scattering coefficients from a set of linearly coupled complex equations for an absorbing sphere not too close to the ground. The approximate method substantially reduced the computational time for calculating the sound field. Preliminary measurements were conducted to characterize the acoustical properties of an absorbing sphere made of open cell polyurethane foam. Subsequent experiments were carried out to demonstrate the validity of the proposed theoretical models for various source/receiver configurations around the sphere above an acoustically hard ground and an impedance ground. Satisfactory comparative results were obtained between the theoretical predictions and experimental data. It was found that the theoretical predictions derived from the approximate solution agreed well with the results obtained by using the exact solutions.  相似文献   

3.
An underwater acoustic experiment with a two-dimensional rough interface, milled from a slab of PVC, was performed at a tank facility. The purpose was to verify the predictions of numerical models of acoustic rough surface scattering, using a manufactured physical model of an ocean bottom that featured shear effects, nonhomogeneous roughness statistics, and root-mean-square roughness amplitude on the order of the acoustic wavelength. Predictions of the received time series and interface scattering strength in the 100-300 kHz band were obtained from the Bottom Reverberation from Inhomogeneities and Surfaces-Small-Slope Approximation (BORIS-SSA) numerical scattering model. The predictions were made using direct measurements of scattering model inputs-specifically, the geoacoustic properties from laboratory analysis of material samples and the grid of surface heights from a touch-trigger probe. BORIS-SSA predictions for the amplitude of the received time series were shown to be accurate with a root-mean-square residual error of about 1 dB, while errors for the scattering strength prediction were higher (2-3.5 dB). The work is part of an ongoing effort to use physical models to examine a variety of acoustic scattering and propagation phenomena involving the ocean bottom.  相似文献   

4.
The present situation in deep inelastic lepton-nucleon scattering is reviewed from an experimenter's point of view. After describing, in some detail, the quark-parton model (QPM) predictions the basic ideas of Quantum Chromodynamics (QCD) are illustrated. The perturbative QCD predictions for deep inelastic scattering are summarised discussing also their theoretical uncertainties of today. Past and present experiments on deep inelastic electron and muon scattering are compared regarding their ability to test these predictions. It is shown that all data is in very good agreement with the QPM and fully consistent with perturbative QCD. New results on lepton scattering off nuclei are discussed and confronted to recently invented phenomenological models.  相似文献   

5.
In this paper we present theoretical and simulation results on the structure factor of mono- and bidisperse ferrofluids with chain aggregates, both with and without an applied external magnetic field. Chain distribution is obtained by the density functional theory (DFT). The radial distribution function (RDF) is calculated directly on the basis of the chain distribution and Fourier transformed to calculate the structure factor. An extensive comparison of the theoretical predictions to the results of the molecular dynamics computer simulations is provided. The proposed combined approach allows to elucidate the connection between experimentally observed small angle neutron scattering (SANS) images and the ferrofluid microstructure.  相似文献   

6.
An experiment at low energy will be done at the COSY cooler synchrotron and storage ring in order to study the three-particle final states of proton-deuteron scattering reactions measuring a complete set of single and double spin observables over large areas of phase space. The physics objective is to test the predictive power of chiral effective field theory at an energy where convergence is guaranteed and few previous measurements exist. A direct comparison between theoretical predictions and experimental data will be enabled by the use of the so called sampling method.  相似文献   

7.
In this review paper the light scattering properties of naturally occurring ice crystals that are found in cirrus are discussed. Cirrus, also referred to as ice crystal clouds, due to their cold temperatures, consist of a variety of non-spherical ice particles which may take on a variety of geometrical forms. These geometrical forms can range from symmetric pristine hexagonal ice columns and plates, single bullets and bullet-rosettes to non-symmetric aggregates of these shapes. These aggregates may also consist of highly complex three-dimensional structures, which may themselves consist of symmetric components. Not only does cirrus consist of a wide variety of shapes but also sizes too, and these sizes can range between <10 μm to over 1 cm. With such a variety of shapes and sizes predicting the light scattering properties from such an ensemble of ice crystals is the current challenge. This challenge is important to overcome since with cirrus being so high in the Earth's atmosphere it has an important influence on the Earth-atmosphere radiation balance and consequently adds to the uncertainty of predicting climate change. This is why it is important to represent as accurately as possible the single-scattering properties of cirrus ice crystals within general circulation models so that uncertainties in climate change predictions can be reduced.In this review paper the current measurements and observations of ice crystal size and shape are discussed and how these observations relate to current ice crystal models is reviewed. The light scattering properties of the current ice crystal models are also discussed and it is shown how space-based instruments may be used to test these models. The need for particular microphysical and space-based measurements is stressed in order to further constrain ice crystal light scattering models.  相似文献   

8.
The peculiar nature of electron scattering in graphene is among many exciting theoretical predictions for the physical properties of this material. To investigate electron scattering properties in a graphene plane, we have created a gate-tunable potential barrier within a single-layer graphene sheet. We report measurements of electrical transport across this structure as the tunable barrier potential is swept through a range of heights. When the barrier is sufficiently strong to form a bipolar junction (n-p-n or p-n-p) within the graphene sheet, the resistance across the barrier sharply increases. We compare these results to predictions for both diffusive and ballistic transport, as the barrier rises on a length scale comparable to the mean free path. Finally, we show how a magnetic field modifies transport across the barrier.  相似文献   

9.
Atom-dimer scattering below the three-body breakup threshold is studied for a system of three identical bosons. The atom-dimer scattering length and the energy of the most weakly bound three-body state are shown to be strongly correlated. An appropriate rescaling of the observables reveals the subtlety of the correlation and serves to identify universal trends in the unitary limit of divergent two-body scattering length. The correlation provides a new quantitative measure of the degree of universality in three-body systems with short-ranged interactions, as well as a consistency check of effective field theories and other theoretical models.  相似文献   

10.
We have determined the eigenvectors of longitudinal phonons with wavevectors in the direction in Si at 12 K from inelastic neutron scattering intensities. The eigenvectors obtained from different model and quantum-mechanical calculations are at variance. Comparison of experimental and theoretical results shows that of the various theoretical predictions the ones from the bond-charge model are in best agreement with experiment. Internal-strain constants from these models and from experiment are compared.  相似文献   

11.
Using a crossed electron-molecular beam experiment, featuring a skimmed nozzle beam with pyrolytic radical production, absolute elastic cross sections for electron scattering from the CF2 molecule have been measured. A new technique for placing measured cross sections on an absolute scale is used for molecular beams produced as skimmed supersonic jets. Absolute differential cross sections for CF2 are reported for incident electron energies of 30-50 eV and over an angular range of 20-135 deg. Integral cross sections are subsequently derived from those data. The present data are compared to new theoretical predictions for the differential and integral scattering cross sections, as calculated with the Schwinger multichannel variational method using the static-exchange and static-exchange plus polarization approximations.  相似文献   

12.
Acoustic scattering from the submerged fluid-filled finite cylindrical shell insonified by an incident plane wave is studied experimentally and theoretically.A monostic broadband transducer with the sharp directivity is used in the experiment.The broadband LFM signal and the single-frequency narrow pulse are used to measure the backscattering field of the cylindrical shell.The measured results have a good agreement with the theory both in time and frequency domain.The theoretical and experimental results show that the resonances of several additional waves which are caused by the internal fluid are presented in the frequency domain.And a series of ’whispering gallery’ waves produced by the waves reflected back and forth in the internal fluid filled in the cylindrical shell are added.The reason for the clustering of the bowl-shape resonance curves in the frequency-angle spectrum is explained as the superposition of the first several modes of ’whispering gallery’ waves.  相似文献   

13.
A number of cirrus ice crystal scattering models are tested using measurements of total reflectance and polarised reflectance obtained from the space-based polarisation and directionality of Earth's reflectances (POLDER) instrument. In this paper, 1 day of global POLDER data is utilised taken from the 25 June 2003 to test the assumed ice crystal models. The POLDER instrument is able to test the validity of various ice crystal models since it can measure the total reflectance and polarised reflectance at up to 14 different viewing directions almost simultaneously between the scattering angles of about 60–180°. It is found that ice crystal models that are randomised (in this case the randomisation element is through distortion) from some pristine ice crystal geometry best fit simultaneous measurements of total and polarised reflectance. The optimal distortion parameter that best describes the POLDER measurements is found to be 0.40, which has been applied to a randomly oriented six-branched bullet-rosette and randomly oriented chain-like aggregate. Moreover, distorted ice crystals that have undergone significant distortions beyond 0.40 may fit the total reflectance measurements but not the polarisation measurements. Therefore, total reflectance measurements by themselves do not provide sufficient information to constrain assumed complex/distorted ice crystal models.  相似文献   

14.
CuGeO3 undergoes a transition from a spin-Peierls phase to an incommensurate phase at a critical field of H(c) approximately 12.5 T. In the high-field phase a lattice of solitons forms, with both structural and magnetic components, and these have been studied using neutron scattering techniques. Our results provide direct evidence for a long-ranged magnetic soliton structure which has both staggered and uniform magnetizations with amplitudes that are broadly in accord with theoretical estimates. The magnetic soliton width gamma(m) and the field dependence of the incommensurability deltak(SP) are found to agree well with theoretical predictions.  相似文献   

15.
An experimental and theoretical study on the optically stimulated spin transport in zinc-blende semiconductors is presented. The first part of the paper describes an experiment which investigates the effect of a longitudinal electric field on the spin-polarized carriers induced by a circularly polarized light. Since the photo-generated hole spins relaxation is extremely fast, the experiment observes only the effect resulting from spin-polarized electrons accumulating at the transverse edges of the sample, as a result of left-right asymmetries in scattering for spin-up and spin-down electrons in the presence of spin–orbit (SO) interaction. It is found that the effect depends on the longitudinal electric field and doping density as well as on temperature. The results are discussed. The second part of the paper deals with a theoretical investigation using norm-conserving pseudopotential and Green function formalism to analyse the SO mechanism responsible for the light-induced Hall voltage. The findings resulting from the investigation are discussed and are compared with experimental data.  相似文献   

16.
An analysis of the most recent data on the reaction ndpnn revealed a serious discrepancy between theoretical predictions and cross sections measured for this reaction in various configurations where the role of neutron-neutron interactions is important. In view of this, it seems necessary both to develop theoretical approaches and to obtain new experimental data. For this purpose, a setup for studying the neutron-deuteron breakup reaction was created at the Institute for Nuclear Research on the basis of the neutron beam in the RADEX channel and deuterium targets. This facility makes it possible to perform experiments over a broad region of primary-neutron energies (10–60 MeV) and in various (final-state interaction, quasifree scattering, and spatial-star) configurations. Preliminary results of the respective experiment were obtained for configurations of final-state neutron-neutron interaction and quasifree neutron-neutron scattering.  相似文献   

17.
A simple model for predicting the sound reflected from a building façade is developed based upon the assumption that the scattering coefficient is small. This model is then used as the basis of an experimental attempt to measure the scattering properties of scale model façades featuring a similar degree of surface irregularity to that found on real buildings. A series of measurements made on a simple scale model are described and the effect of a non-uniform distribution of façade scattering is examined. The measured value of the scattering coefficient is found to be small and not very sensitive to the degree of surface irregularity. A progression of energy from a specular reflection field to a diffuse reflection field for successive orders of reflections is observed. It is suggested that the dominant mechanism of sound propagation for higher order reflections is via random scattering and that the development of propagation models based upon purely random scattering is a valid approach.  相似文献   

18.
A model for the direct problem of calculating the forward scattering signature of a multiple scattering medium is presented. The new formulation is optimized for integration into schemes for reconstructing the particle size distribution from laser diffraction (forward scattering) signatures obtained from optically thick media. The analysis is valid for media where the particle sizes and interparticle spacings are large (relative to the wavelength and the particle size, respectively) such that Fraunhofer diffraction theory adequately describes the properties of the forward scattered light from individual scattering events. The simulated performance of laser diffraction particle sizing instruments was then studied using predictions of the scattered light signatures which would be measured by laser diffraction instrument under multiple scattering conditions. The results were compared with experimental data and theoretical calculations based on other models.  相似文献   

19.
This paper presents a theoretical and finite element (FE) investigation of the scattering characteristics of the fundamental anti-symmetric (A0) Lamb wave at delaminations in a quasi-isotropic (QI) composite laminate. Analytical models based on the Mindlin plate theory and Born approximation are presented to predict the A0 Lamb wave scattering at a delamination, which is modelled as an inhomogeneity, in an equivalent isotropic model of the QI composite laminate. The results are compared with FE predictions, in which the delamination is modelled as a volume split. The equivalent isotropic model and QI composite laminate are used to investigate the feasibility of the common theoretical approach of modelling the delamination as the inhomogeneity. A good correlation is observed between the theoretical solutions and FE results in the forward scattering amplitudes, but there exists a larger discrepancy in the backward scattering amplitudes. The FE results also show that the fibre direction of the outer laminae has a pronounced influence on the forward and backward scattering amplitudes, which is not predicted by the analytical models.  相似文献   

20.
We report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at backward angles at Q2=0.038 (GeV/c)2. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon, which can potentially receive large electroweak corrections. The measured asymmetry A=-3.51+/-0.57 (stat)+/-0.58 (syst) ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also consistent with theoretical predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号