首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
The extended homoclinic test function method is a kind of classic, efficient and well-developed method to solve nonlinear evolution equations. In this paper, with the help of this approach, we obtain new exact solutions (including kinky periodic solitary-wave solutions, periodic soliton solutions, and crosskink-wave solutions) for the new (2+1)-dimensional KdV equation. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.  相似文献   

2.
In this paper, the nonlinear dispersive Zakharov- Kuznetsov equation is solved by using the generalized auxiliary equation method. As a result, new solitary pattern, solitary wave and singular solitary wave solutions are found.  相似文献   

3.
In this paper, new Jacobi elliptic function solutions of multi-component mKdV equation are obtained directly in a unified way. When the modulus m→1, those periodic solutions degenerate as the corresponding hyperbolic function solutions. Then, to the three-component mKdV equation, five types of effective solution are presented in detail.  相似文献   

4.
5.
It is common knowledge that the soliton solutions u(x, t) defined by the bell-shape form is required to satisfy the following condition lira u(x, t) = u(±∞, t) = 0. However, we think that the above condition can be modified as lim u(x, t) = u(±∞, t)^x→ = c, where c is a constant, which is called as a stationary height of u(x, t) in the present paper.^x→∞ If u(x, t) is a bell-shape solitary solution, then the stationary height of each solitary wave is just c. Under the constraint c = 0, all the solitary waves coming from the N-bell-shape-sollton solutions of the KdV equation are the same-oriented travelling. A new type of N-soliton solution with the bell shape is obtained in the paper, whose stationary height is an arbitrary constant c. Taking c ≥ 0, the resulting solitary wave is bound to be the same-oriented travelling. Otherwise, the resulting solitary wave may travel at the same orientation, and also at the opposite orientation. In addition, another type of singular rational travelling solution to the KdV equation is worked out.  相似文献   

6.
Based on a first-order nonlinear ordinary differential equation with six-degree nonlinear term, we first present a new auxiliary equation expansion method and its algorithm. Being concise and straightforward, the method is applied to the Kundu equation. As a result, some new exact travelling wave solutions are obtained, which include bright and dark solitary wave solutions, triangular periodic wave solutions, and singular solutions. This algorithm can also be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

7.
New Exact Travelling Wave Solutions to Kundu Equation   总被引:1,自引:0,他引:1  
Based on a first-order nonlinear ordinary differential equation with Six-degree nonlinear term, we first present a new auxiliary equation expansion method and its algorithm. Being concise and straightforward, the method is applied to the Kundu equation. As a result, some new exact travelling wave solutions are obtained, which include bright and dark solitary wave solutions, triangular periodic wave solutions, and singular solutions. This algorithm can also be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

8.
Exact Two-Soliton Solutions for Discrete mKdV Equation   总被引:1,自引:0,他引:1  
An exact two-soliton solution of discrete mKdv equation is derived by using the Hirota direct approach. In addition, we plot the soliton solutions to discuss the properties of solitons. It is worth while noting that we obtain the completely elastic interaction between the two solitons.  相似文献   

9.
A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of "rank". The key idea of this method is to make use of the arbitrariness of the manifold in Painleve analysis. We selected a new expansion variable and thus obtained a rich variety of travelling wave solutions to nonlinear evolution equation, which covered solitary wave solutions, periodic wave solutions, Weierstrass elliptic function solutions, and rational solutions. Three illustrative equations are investigated by this means, and abundant travelling wave solutions are obtained in a systematic way. In addition, some new solutions are firstly reported here.  相似文献   

10.
In this paper, we generalize the extended tanh-function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, two series of exact travelling wave solutions of the discrete sine-Gordon equation are obtained by means of the extended tanh-function approach.  相似文献   

11.
In this paper, we generalize the extended tanh-function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, two series of exact travelling wave solutions of the discrete sine-Gordon equation are obtained by means of the extended tanh-function approach.  相似文献   

12.
By using the generally projective Riccati equation method, more new exact travelling wave solutions to extended nonlinear Schrödinger equation (NLSE), which describes the femtosecond pulse propagation in monomode optical fiber, are found, which include bright soliton solution, dark soliton solution, new solitary waves, periodic solutions, and rational solutions. The finding of abundant solution structures for extended NLSE helps to study the movement rule of femtosecond pulse propagation in monomode optical fiber.  相似文献   

13.
In this letter, abundant families of Jacobi elliptic function envelope solutions of the N-coupled nonlinear Schroedinger (NLS) system are obtained directly. When the modulus m → 1, those periodic solutions degenerate as the corresponding envelope soliton solutions, envelope shock wave solutions. Especially, for the 3-coupled NLS system, five types of Jacobi elliptic function envelope solutions are illustrated both analytically and graphically. Two types of those degenerate as envelope soliton solutions.  相似文献   

14.
Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2 1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived solitary wave solution, we obtain some specific chaotic solitons to the (2 1)-dimensional GBK system.  相似文献   

15.
Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived solitary wave solution, we obtain some specific chaotic solitons to the (2+1)-dimensional GBK system.  相似文献   

16.
Exact Periodic-Wave Solutions to Nizhnik-Novikov-Veselov Equation   总被引:2,自引:0,他引:2  
Exact periodic-wave solutions to the generalized Nizhnik-Novikov-Veselov (NNV) equation are obtained by using the extended Jacobi elliptic-function method, and in the limit case, the solitary wave solution to NNV equation are also obtained.  相似文献   

17.
In the present paper, we construct the analytical exact solutions of some nonlinear evolution equations in mathematical physics; namely the space-time fractional Zakharov–Kuznetsov(ZK) and modified Zakharov–Kuznetsov(m ZK) equations by using fractional sub-equation method. As a result, new types of exact analytical solutions are obtained. The obtained results are shown graphically. Here the fractional derivative is described in the Jumarie's modified Riemann–Liouville sense.  相似文献   

18.
In this paper,by using bilinear form and extended homoclinic test approach,we obtain new breather-type periodic soliton solutions of the (1+1)-dimensional Sinh-Poisson equation.These results demonstrate that the nonlinear evolution equation has rich dynamical behavior even if it is (1+1)-dimensional.  相似文献   

19.
In this paper, the idea of a combination of variable separation approach and the extended homoclinic test approach is proposed to seek non-travelling wave solutions of Calogero equation. The equation is reduced to some (1+1)-dimensional nonlinear equations by applying the variable separation approach and solves reduced equations with the extended homoclinic test technique. Based on this idea and with the aid of symbolic computation, some new explicit solutions can be obtained.  相似文献   

20.
Two types of symmetry of a generalized Zakharov-Kuznetsov equation are obtained via a direct symmetry method. By selecting suitable parameters occurring in the symmetries, we also find some symmetry reductions and new explicit solutions of the generalized Zakharov-Kuznetsov equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号