首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the problem of finite-time synchronization control for uncertain Markov jump neural networks in the presence of constraints on the control input amplitude. The parameter uncertainties under consideration are assumed to belong to a fixed convex polytope. By using a parameter-dependent Lyapunov functional and a simple matrix decoupling method, a sufficient condition is proposed to ensure that the considered networks are stochastically synchronized over a finite-time interval. The desired mode-independent controller parameters can be computed via solving a convex optimization problem. Finally, two chaos neural networks are employed to demonstrate the effectiveness of our proposed approach.  相似文献   

2.
Tan  Wei  Dai  Zhengde 《Nonlinear dynamics》2017,88(4):2723-2733
Nonlinear Dynamics - This paper focuses on the finite-time synchronization problem for a kind of general complex networks with intrinsic time-varying delays and hybrid couplings (i.e., containing...  相似文献   

3.
In this paper, the problem of finite-time stability of fractional-order complex-valued memristor-based neural networks (NNs) with time delays is extensively investigated. We first initiate the fractional-order complex-valued memristor-based NNs with the Caputo fractional derivatives. Using the theory of fractional-order differential equations with discontinuous right-hand sides, Laplace transforms, Mittag-Leffler functions and generalized Gronwall inequality, some new sufficient conditions are derived to guarantee the finite-time stability of the considered fractional-order complex-valued memristor-based NNs. In addition, some sufficient conditions are also obtained for the asymptotical stability of fractional-order complex-valued memristor-based NNs. Finally, a numerical example is presented to demonstrate the effectiveness of our theoretical results.  相似文献   

4.
Liu  Maoxing  Wu  Jie  Sun  Yong-zheng 《Nonlinear dynamics》2017,89(4):2967-2977
Nonlinear Dynamics - In this paper, the finite-time outer synchronization between two complex dynamical networks with noise perturbation is considered. Combing the adaptive and finite-time control...  相似文献   

5.
Due to resource constraints in wireless sensor networks and the presence of unwanted conditions in communication systems and transmission channels, the suggestion of a robust method which provides battery lifetime increment and relative security is of vital importance. This paper considers the secure communication in wireless sensor networks based on new robust adaptive finite time chaos synchronization approach in the presence of noise and uncertainty. For this purpose, the modified Chua oscillators are added to the base station and sensor nodes to generate the chaotic signals. Chaotic signals are impregnated with the noise and uncertainty. At first, we apply the modified independent component analysis to separate the noise from the chaotic signals. Then, using the adaptive finite-time sliding mode controller, a control law and an adaptive parameter-tuning method is proposed to achieve the finite-time chaos synchronization under the noisy conditions and parametric uncertainties. Synchronization between the base station and each of the sensor nodes is realized by multiplying a selection matrix by the specified chaotic signal which is broadcasted by the base station to the sensor nodes. Simulation results are presented to show the effectiveness and applicability of the proposed technique.  相似文献   

6.
A fractional-order weighted complex network consists of a number of nodes, which are the fractional-order chaotic systems, and weighted connections between the nodes. In this paper, we investigate generalized chaotic synchronization of the general fractional-order weighted complex dynamical networks with nonidentical nodes. The well-studied integer-order complex networks are the special cases of the fractional-order ones. Based on the stability theory of linear fraction-order systems, the nonlinear controllers are designed to make the fractional-order complex dynamical networks with distinct nodes asymptotically synchronize onto any smooth goal dynamics. Numerical simulations are provided to verify the theoretical results. It is worth noting that the synchronization effect sensitively depends on both the fractional order ?? and the feedback gain k i . Moreover, generalized synchronization of the fractional-order weighted networks can still be achieved effectively with the existence of noise perturbation.  相似文献   

7.
This paper mainly investigates the projective and lag synchronization between general complex networks via impulsive control. A general drive complex network and an impulsively controlled slave network are presented in the model. Specially, the coupling matrix in this model is not assumed to be symmetric, diffusive or irreducible. Some criteria and corollaries are, respectively, derived for the projective synchronization and lag synchronization between the presented impulsively controlled complex networks. Finally, the results are illustrated by complex networks composed of the chaotic Lorenz systems. All the numerical simulations verify the correctness of the theoretical results.  相似文献   

8.
In this paper, the synchronization for time-delayed complex networks with adaptive coupling weights is studied. A pinning strategy and a local adaptive scheme to determine coupling weights and feedback gains are proposed. It is noted that our control strategies only rely on some local information other than the global information of the whole network. Finally, the developed techniques are applied to two complex networks which are respectively synchronized to an unstable equilibrium point and a chaotic attractor.  相似文献   

9.
The finite-time synchronization problem of a class of complex dynamical networks with time-varying delays is addressed in this paper. The network topology is assumed to be directed and weakly connected. By introducing a special zero row-sum matrix and combining the Lyapunov?CKrasovskii functional method and the Kronecker product technique, a sufficient condition is presented, which consist of two simple low-dimensional matrix inequalities. Illustrative example is given to show the feasibility of the proposed method.  相似文献   

10.
This paper investigates the global finite-time synchronization of a class of the second-order nonautonomous chaotic systems via a master?Cslave coupling. A?continuous generalized linear state-error feedback controller with simple structure is introduced into the synchronization scheme. Some easily implemented algebraic criteria for achieving the global finite-time synchronization are proven and then optimized for the purposes of improving their sharpness. The optimized criteria are applied to a practical master?Cslave synchronization scheme for the single-machine-infinite-bus (SMIB) systems, obtaining the precise corresponding synchronization conditions. Several numerical examples are provided to illustrate the effectiveness of the new synchronization criteria.  相似文献   

11.
In this paper, the synchronization of Takagi–Sugeno (T-S) fuzzy complex networks with time-varying delays and adaptive coupling weights is studied. Using the pinning control and adaptive feedback strategy, a new general class of complex networks with fuzzy logic is proposed and its synchronization is investigated in terms of linear matrix inequalities (LMIs). The adaptive update law of coupling weight is only related to the dynamical behaviors of directly connected nodes. Based on the Lyapunov stability theory, it is proven that the synchronization of the addressed network can be achieved under those control strategies. Finally, two numerical examples are given to verify the effectiveness of our theoretical results.  相似文献   

12.
In this paper, the finite-time synchronization problem has been investigated for a general array model of dynamical networks with time-varying delay and hybrid coupling. The Lyapunov functional method and linear matrix inequality technique are employed to obtain some synchronization criteria less-conservative and delay-dependent. Here, the coupling configuration matrices are not required to be symmetric or irreducible, neither is their off-diagonal entries assumed to be nonnegative. Moreover, the inner linking matrices are arbitrary real matrices. Finally, numerical examples are given to demonstrate the effectiveness of the proposed synchronous criteria.  相似文献   

13.
This paper investigates the output synchronization of a class of impulsive complex dynamical networks with time-varying delay. By constructing suitable Lyapunov functionals, some new and useful conditions are obtained to guarantee the local and global exponential output synchronization of the impulsive complex networks. Finally, numerical examples are given to demonstrate the effectiveness of the theoretical results.  相似文献   

14.
In this paper, an adaptive linear feedback controller is presented to study the synchronization problem of different Cohen–Grossberg neural networks with unknown parameters and time-varying delays. Lyapunov stability theory and Barbalat’s lemma are used to guarantee the response system can be synchronized with the drive system. The synchronization criteria of this paper which do not solve any linear matrix inequality are easily verified. These results remove some restrictions on amplification functions and activation functions. Finally, numerical simulations are carried out to illustrate the effectiveness of the obtained results.  相似文献   

15.
The synchronization problem for a complex dynamical network is investigated in this paper from a spectral analysis approach. It is assumed that only a small portion of the nodes in the network are chosen to be controlled, known as the pinning control scheme. Some new types of synchronized regions for networks with different node dynamics and inner-coupling structures are discovered, especially for the case of the special chaotic node systems with a stable equilibrium point under fully anti-diagonal and partially anti-diagonal couplings. The eigenvalue distributions of the coupling and control matrices for different types of complex networks are obtained. The effects of the network topology, global coupling strength, pinning density, and pinning strength on the network synchronizability are examined through extensive numerical simulations. It is shown that the synchronizability of the pinned network can be effectively improved by increasing the overall coupling strength, pinning density, and pinning strength for some classes of synchronized regions, whereas too large the pinning density and pinning strength will lead to desynchronization for other classes. It is found that small-world networks are not always easier to synchronize than regular rings, and a denser eigenvalue distribution may not always imply better synchronizability.  相似文献   

16.
In this paper, the analysis problem of adaptive exponential synchronization in pth moment is considered for stochastic complex networks with time varying multi-delayed coupling. By using the Lyapunov–Krasovskii functional, stochastic analysis theory, several sufficient conditions to ensure the mode adaptive exponential synchronization in pth moment for stochastic delayed complex networks are derived. To illustrate the effectiveness of the synchronization conditions derived in this paper, a numerical example is finally provided.  相似文献   

17.
Cluster synchronization is an interesting issue in complex dynamical networks with community structure. In this paper, we study cluster synchronization of complex networks with non-identical systems by input-to-state stability. Some sufficient conditions that ensure cluster synchronization of complex networks are provided. We show that the cluster synchronization is difficult to achieve if there are some links among different clusters. The analysis is then extended to the case where the outer coupling strengths are adaptive. Finally, numerical simulations are given to validate our theoretical analysis.  相似文献   

18.
It is difficult that all the boundaries of chaotic system were estimated precisely; this is why the coupling coefficient cannot be determined beforehand in the problem of synchronization of complex networks. Thus, an estimation of coupling coefficient should be given before designing some controllers. In addition, to realize the synchronization, the estimated coupling coefficient has to be large enough. However, it is not true that the larger the coupling coefficient the better the synchronization is. In fact, a coupling coefficient which is larger than what it needs to be means the energy waste. To overcome this difficulty, in this paper we propose an adaptive coupling method. And a new concept about asymptotic stability is presented. Numerical simulations are implemented on different complex networks. The results indicate that the synchronization can be achieved without a large estimated coefficient.  相似文献   

19.
This letter investigates the adaptive finite-time synchronization of different coupled chaotic (or hyperchaotic) systems with unknown parameters. The sufficient conditions for achieving the generalized finite-time synchronization of two chaotic systems are derived based on the theory of finite-time stability of dynamical systems. By the adaptive control technique, the control laws and the corresponding parameters update laws are proposed such that the generalized finite-time synchronization of nonidentical chaotic (or hyperchaotic) systems is to be obtained. These results obtained are in good agreement with the existing one in open literature and it is shown that the technique introduced here can be further applied to various finite-time synchronizations between dynamical systems. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed scheme.  相似文献   

20.
This paper addresses the problem of finite-time synchronization of jerk chaotic systems through a simple linear feedback control. The controller is designed such that practical finite-time synchronization could be achieved. As example, we use a new jerk system obtained thanks to the chaotification of the Duffing system using jerk architecture and simplification via a single silicon p-n junction diode. Mathematic proof, numerical and PSpice simulations, and practical results are presented to show the feasibility of the proposed scheme. The proposed method could be applied to all jerk-like systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号