首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the one-pot synthesis of core 2 class branched oligosaccharides initiated by chemo-selective glycosylation of silyl ether. Glycosylation of 6-O-silyl-4-benzyl-2-azido-thiogalactoside with glycosyl fluoride provided selectively 6-glycosylated thioglycoside without both O-glycosylation at the 3 position and S-glycosylation. Subsequent coupling of galactosyl fluoride and amino acids afforded the protected branched oligosaccharides in good yields.  相似文献   

2.
Sialylation reactions using a new sialyl donor, diethyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-O-beta-D-glycero-D-galacto-2-nonulopyranosylonamide phosphite (Neu5Ac-1-amide-2-phosphite) derivatives, and the synthesis of the sialyl-T N-MUC4 glycopeptide are described. The sialylation was performed in CH2Cl2 solvent toward the 6-hydroxyl group of several monosugar acceptors and generated alpha-sialoside in good yield under low temperature and TMSOTf activation system. Amide derivatives of sialoside were easily converted into naturally occurring sialoside after hydrolysis of the amide group. Sialyl-alpha(2,6)-GalN3 was also prepared by this new sialylation protocol, and then this sialoside was further converted into a Fmoc-protected sialyl-TN serine derivative for solid-phase glycopeptides synthesis. The solid-phase glycopeptide synthesis using this sialyl-TN serine derivative in which the sugar hydroxyl group was free afforded the target sialyl-TN-MUC4 glycopeptide.  相似文献   

3.
An efficient and convenient approach for stereoselective synthesis of β-linked 2,6-dideoxyglycosides has been developed through one-pot glycosylation strategy using glycosyl iodide intermediates. The glycosidation reaction, promoted by easily available silver nitrate, provided the corresponding 2,6-dideoxyglycosides and oligosaccharides with preponderant β-configuration (β/α = 2.3:1 to 11:1) and good to excellent yields (52–84%).  相似文献   

4.
Propargyl 1,2-O-orthoesters are exploited for the synthesis of 1,2-trans O-glycosides of protected amino acids. N-Fmoc- and N-Cbz protected serine/threonine - benzyl/methyl esters reacted well with glucosyl-, galactosyl-, mannosyl- and lactosyl- derived propargyl 1,2-orthoesters affording respective 1,2-trans glycosides in good yields under AuBr(3)/4 ? MS Powder/CH(2)Cl(2)/rt. t-Boc serine derivative gave serine 1,2-orthoester and glycosyl carbamate. Optimized conditions enabled preparation of new glycosyl carbamates from N-Boc protected amines in a single step using gold catalysts and propargyl 1,2-orthoesters in excellent yields.  相似文献   

5.
A stereodivergent synthesis of differently configured C2‐branched 4‐amino sugar derivatives was accomplished. The Lewis acid mediated rearrangement of phenylthio‐substituted 1,2‐oxazines delivered glycosyl donor equivalents that can directly be employed in glycosidation reactions. Treatment with methanol provided internally protected amino sugar equivalents that have been transformed into the stereoisomeric methyl glycosides 28 , ent‐ 28 , 29 , ent‐ 29 and 34 in two simple reductive steps. Reaction with natural carbohydrates or bicyclic amino sugar precursors allowed the synthesis of homo‐oligomeric di‐ and trisaccharides 44 , 46 and 47 or a hybrid trisaccharide 51 with natural carbohydrates. Access to a bivalent amino sugar derivative 54 was accomplished by reaction of rearrangement product 10 with 1,5‐pentanediol. Alternatively, when a protected L ‐serine derivative was employed as glycosyl acceptor, the glycosylated amino acid 60 was efficiently prepared in few steps. In this report we describe the synthesis of unusual amino sugar building blocks from enantiopure 1,2‐oxazines that can be attached to natural carbohydrates or natural product aglycons to produce new natural product analogues with potential applications in medicinal chemistry.  相似文献   

6.
An efficient direct one-pot glycosylation method with anomeric hydroxy sugars as glycosyl donors employing phthalic anhydride and triflic anhydride as activating agents has been developed. Thus, highly stereoselective beta-mannopyranosylations were achieved by the reaction of 2,3-di-O-benzyl-4,6-O-benzylidene-D-mannopyranose (2) with phthalic anhydride in the presence of DBU at room temperature followed by sequential addition of DTBMP and Tf2O and glycosyl acceptors to the reaction mixture at -78 degrees C in one-pot. Stereoselective alpha-glucopyranosylations with 2,3-di-O-benzyl-4,6-O-benzylidene-D-glucopyranose (25) and other glycosylations with glucopyranoses and mannopyranoses having tetra-O-benzyl- and tetra-O-benzoyl protecting groups were also possible by utilizing the present one-pot glycosylation protocol. The possible mechanism for the beta-mannosylation with 2 was proposed based on the NMR study, in which alpha-mannosyl phthalate 55alpha and alpha-mannosyl triflate 59 were detected as intermediates. The versatility and efficiency of the present glycosylation methodology, especially those of the beta-mannopyranosylation protocol, were readily demonstrated by the efficient synthesis of protected beta-(1-->4)-D-mannotriose 62 and beta-(1-->4)-D-mannotetraose 67 with perfect beta-stereoselectivity.  相似文献   

7.
The glycosidation of a polymer‐supported glycosyl donor, N‐phenyltrifluoroacetimidate, with various glycosyl acceptors is reported. The application of the polymer‐supported N‐phenyltrifluoroacetimidate is demonstrated in the synthesis of vancomycin derivatives. 2‐O‐[2‐(azidomethyl)benzoyl]glycosyl imidate was attached to a polymer support at the 6‐position by a phenylsulfonate linked with a C13 alkyl spacer. Solid‐phase glycosidation with a vancomycin aglycon, selective deprotection of the 2‐(azidomethyl)benzoyl group, and glycosylation of the resulting 2‐hydroxy group with a vancosamine unit were performed. Nucleophilic cleavage from the polymer support with acetate, chloride, azido, and thioacetate ions provided vancomycin derivatives in pure form after simple purification. The semisynthesis of vancomycin was achieved by deprotection of the acetate derivative.  相似文献   

8.
Catalytic and stereoselective glycosylation efficiently proceeded by activating a glycosyl N-trichloroacetylcarbamate with a catalytic amount of Lewis acids in the presence of a glycosyl acceptor and molecular sieves 5 Å. Catalytic and one-pot dehydrative glycosylation of a 1-hydroxy carbohydrate was also performed stereoselectively by the reaction with trichloroacetyl isocyanate followed by activation with a catalytic amount of activators.  相似文献   

9.
Glycosidation of fully acetylated glucopyranosyl iodide with methanol under the influence of iodine gave α‐glucoside selectively. Use of less reactive acceptors led to the formation of α/β‐mixtures. Glycosylations with fully benzoylated glucosyl iodide yielded β‐glucosides only. In contrast, iodine-promoted glycosylation of serine and threonine with 2‐azido‐2‐deoxy‐glycosyl iodides, easily obtained in three steps, proceeded smoothly, resulting in only α‐linked products in high yield in most cases.  相似文献   

10.
TMSOTf-promoted glycosidation of 2-azido-4,6-O-benzylidene-2-deoxygalactosyl diphenyl phosphates with fluorenylmethoxycarbonyl (Fmoc)-protected serine and threonine derivatives in THF/Et2O (1:1) gave glycosyl amino acids in high yields and with excellent levels of α-selectivity (α/β=94:6–95:5). The synthetic utility of the present glycosidation method was demonstrated by a stereoselective synthesis of mucin-type glycopeptide core 5 and core 7 building blocks, which are suitable for Fmoc-based solid-phase synthesis of O-glycopeptides.  相似文献   

11.
[reaction: see text] It is demonstrated that a ring-fused 2,3-oxazolidinone-protected derivative of 1-tolylthio-N-acetyl-D-glucosamine undergoes high-yield glycosidation under mild donor activation conditions. Stereoselective formation of alpha-linked or beta-linked glycosides is dependent on reactivity of acceptor alcohols, where rate of glycosidation correlates to stereochemical outcome. Evidence for the role of glycosyl triflate intermediates and the N-acetyl substituent of the 2N,3O-oxazolidinone ring in stereochemical control is presented.  相似文献   

12.
The technique of intramolecular aglycon delivery (IAD), whereby a glycosyl acceptor is temporarily appended to a hydroxyl group of a glycosyl donor is an attractive method that can allow the synthesis of 1,2-cis glycosides in an entirely stereoselective fashion. 2-O-Allyl protected thioglycoside donors are excellent substrates for IAD, and may be glycosylated stereoselectively through a three-step reaction sequence. This sequence consists of quantitative yielding allyl bond isomerisation, to produce vinyl ethers that can then undergo N-iodosuccinimide mediated tethering of the desired glycosyl acceptor, and subsequent intramolecular glycosylation, to yield either alpha-glucosides or beta-mannosides accordingly. Although attempted one-pot tethering and glycosylation is hampered by competitive intermolecular reaction with excess glycosyl acceptor, this problem can be simply overcome by the use of excess glycosyl donor. Allyl mediated IAD is a widely applicable practical alternative to other IAD approaches for the synthesis of beta-mannosides, that is equally applicable for alpha-gluco linkages. It is advantageous in terms of both simplicity of application and yield, and in addition has no requirement for cyclic 4,6-protection of the glycosyl donor.  相似文献   

13.
The development of selectively protected monosaccharide building blocks that can reliably be glycosylated with a wide variety of acceptors is expected to make oligosaccharide synthesis a more routine operation. In particular, there is an urgent need for the development of modular building blocks that can readily be converted into glycosyl donors for glycosylations that give reliably high 1,2-cis-anomeric selectivity. We report here that 1,2-oxathiane ethers are stable under acidic, basic, and reductive conditions making it possible to conduct a wide range of protecting group manipulations and install selectively removable protecting groups such as levulinoyl (Lev) ester, fluorenylmethyloxy (Fmoc)- and allyloxy (Alloc)-carbonates, and 2-methyl naphthyl ethers (Nap). The 1,2-oxathiane ethers could easily be converted into bicyclic anomeric sulfonium ions by oxidization to sulfoxides and arylated with 1,3,5-trimethoxybenzene. The resulting sulfonium ions gave high 1,2-cis-anomeric selectivity when glycosylated with a wide variety of glycosyl acceptors including properly protected amino acids, primary and secondary sugar alcohols and partially protected thioglycosides. The selective protected 1,2-oxathianes were successfully employed in the preparation of a branched glucoside derived from a glycogen-like polysaccharide isolated form the fungus Pseudallescheria boydii , which is involved in fungal phagocytosis and activation of innate immune responses. The compound was assembled by a latent-active glycosylation strategy in which an oxathiane was employed as an acceptor in a glycosylation with a sulfoxide donor. The product of such a glycosylation was oxidized to a sulfoxide for a subsequent glycosylation. The use of Nap and Fmoc as temporary protecting groups made it possible to install branching points.  相似文献   

14.
We have found that activating either 2,3‐bis(2,3,4‐trimethoxyphenyl)cyclopropenone or 2,3‐bis(2,3,4‐trimethoxyphenyl)cyclopropene‐1‐thione with oxalyl bromide results in the formation of a species that promotes the glycosylation between 2,6‐dideoxy‐sugar hemiacetals and glycosyl acceptors in good yield and high α‐selectivity. Both reactions are mild and tolerate a number of sensitive functional groups including highly acid‐labile 2,3,6‐trideoxy‐sugar linkages.  相似文献   

15.
Condensation of a silylated beta-D-galactopyranosylaldehyde (3) with isolevoglucosenone (4) in the presence of Et(2)AlI provided bicyclic enone 5. Subsequent addition of BnNHOMe gave adduct 6, which was converted into 4-O-acetyl-1,6-anhydro-3-C-[(1 R)-1,3,4,5,7-penta-O-acetyl-2,6-anhydro-D-glycero-L-manno-heptitol-1-C-yl]-2-azido-2,3-dideoxy-beta-D-galacto-hexopyranose after liberation of the 2-amino group, its transformation into a 2-azido moiety, desilylation, and peracetylation. Ring-opening of the 1,6-anhydro galactopyranosyl unit and O-glycosidation with Fmoc-Ser-O-tBu afforded a 5:1 mixture of alpha- and beta-galactosides. Treatment with CH(3)COSH gave pure N-[(9H-fluoren-9-ylmethoxy)carbonyl]-{4,6-di-O-acetyl-3-C-[(1 R)-2,6-anhydro 1,3,4,5,7-penta-O-acetyl-D-glycero-L-manno-heptitol-1-C-yl]-2-[(N-acetyl)amino]-2,3-dideoxy-alpha-D-galactopyranosyl}-l-serine tert-butyl ester (2), a protected form of a C-disaccharide analogue of the Thomsen-Friedenreich (or T) epitope (beta-D-Galp-(1-->3)-alpha-D-GalNAcp) alpha-O-conjugated to L-serine.  相似文献   

16.
The total synthesis of ganglioside GP3, which is found in the starfish Asterina pectinifera, has been accomplished through stereoselective and effective glycosylation reactions. The sialic acid embedded octasaccharide moiety of the target compound was constructed by [4+4] convergent coupling. A tetrasaccharyl donor and acceptor that contained internal sialic acid residues were synthesized with an orthogonally protected N‐Troc sialic acid donor as the key common synthetic unit, and they underwent highly stereoselective glycosidation. The resulting sialosides were subsequently transformed into reactive glycosyl acceptors. [4+4] coupling furnished the octasaccharide framework in 91 % yield as a single stereoisomer. Final conjugation of the octasaccharyl donor and glucosyl ceramide acceptor produced the protected target compound in high yield, which underwent global deprotection to successfully deliver ganglioside GP3.  相似文献   

17.
Readily prepared mannosyl n-pentenylorthoesters (NPOEs) serve as donors in themselves and as convenient intermediates for other glycosyl donors, such as n-pentenyl glycosides (NPGs), thioglycosides, and trichloroacetimidates. These various donors are activated by different reagents, and are therefore amenable to versatile, discriminate use. Scandium and ytterbium triflates respond very differently to these donors, with the result that chemoselective discrimination between NPOEs, NPGs, trichloroacetimidates as well as ethyl and phenyl thioglycosides can be achieved. Appropriate NPOEs are also able to provide 2,6 and 3,6 diol acceptors via rearrangement or glycoside formation, and these can be used for one-pot, sequential glycosidations based on orthogonal donors, and in situ double differential glycosidations. Thus NPOEs activated by iodonium ion, specifically generated from ytterbium triflate/N-iodosuccinimide, can be used to monoglycosidate the diols rapidly, with exquisite regio, and sometimes chemo, selectivity. The residual NPOE is converted into disarmed NPG, which is refractory to the reaction conditions, and so poses no threat to the free-OH of the monoglycosidation product. Further glycosidation of the latter can then achieved by direct addition of a trichloroacetimidate or ethyl thioglycoside. This basic strategy has been used to prepare a branched chain pentadecamannan. The success is an example of the efficiency of donor/acceptor MATCH concept for regioselective glycosylation.  相似文献   

18.
A new approach to the synthesis of biologically relevant glycosyl amino acids using a non-natural amino acid as the glycosyl acceptor is described. The procedure involves a glycosylation reaction of a suitable carbohydrate donor with Fmoc-l-hydroxynorleucine benzyl ester. This reaction results in the direct incorporation of the amino acid moiety. The acceptor can be used for the preparation of α- or β-O-linked glycosides depending upon the nature of the glycosyl donor. This method has been applied in the synthesis of six different tumor-associated carbohydrate antigens.  相似文献   

19.
Abstract

Galacturonamides of amino acids (alanine, lysine, serine, and threonine), constituents of Proteus O-specific polysaccharides, have been synthesised. O-tert-Butyl and N?-tert-butyloxycarbonyl protected amino acid tert-butyl esters were condensed with the 2-azidoethyl α-glycoside of d-galacturonic acid, prepared by Fischer glycosidation. Reduction of the azido group followed by N-acryloylation and deprotection gave the target monomers. By copolymerisation with acryl-amide, these were converted into glycopolymers potentially useful for defining epitopes in Proteus O-antigens.  相似文献   

20.
[reaction: see text] Activation of ester-protected glycosyl trichloroacetimidate donors by perchloric acid immobilized on silica afforded 1,2-trans disaccharides in 60-90% yields. Applying this approach to one-pot sequential glycosylation resulted in efficient syntheses of the N-linked glycan trimannoside and Le(X) and Le(A) trisaccharides in very good yield (76%, 62%, and 59% yields, respectively). Solution phase reactions were also translated to a solid phase format; priming the top of a standard silica chromatography column with perchloric acid immobilized on silica facilitated "on-column" glycosylation with subsequent "in situ" purification of products. Coupling yields from this approach were comparable to those obtained from the corresponding solution-phase disaccharide couplings. A series of glycosylated amino acids were also synthesized in high yield with use of the on-column approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号