首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microfluidic fuel cell architecture incorporating flow-through porous electrodes is demonstrated. The design is based on cross-flow of aqueous vanadium redox species through the electrodes into an orthogonally arranged co-laminar exit channel, where the waste solutions provide ionic charge transfer in a membraneless configuration. This flow-through architecture enables improved utilization of the three-dimensional active area inside the porous electrodes and provides enhanced rates of convective/diffusive transport without increasing the parasitic loss required to drive the flow. Prototype fuel cells are fabricated by rapid prototyping with total material cost estimated at 2 USD/unit. Improved performance as compared to previous microfluidic fuel cells is demonstrated, including power densities at room temperature up to 131 mW cm-2. In addition, high overall energy conversion efficiency is obtained through a combination of relatively high levels of fuel utilization and cell voltage. When operated at 1 microL min-1 flow rate, the fuel cell produced 20 mW cm-2 at 0.8 V combined with an active fuel utilization of 94%. Finally, we demonstrate in situ fuel and oxidant regeneration by running the flow-through architecture fuel cell in reverse.  相似文献   

2.
Zhu X  Yi Chu L  Chueh BH  Shen M  Hazarika B  Phadke N  Takayama S 《The Analyst》2004,129(11):1026-1031
This paper describes the use of arrays of horizontally-oriented reservoirs to deliver liquids through microchannels at a constant flow rate over extended periods of time (hours to days). The horizontal orientation maintains a constant hydraulic pressure drop across microfluidic channels even as the volumes of liquids within the reservoirs change over time. For a given channel-reservoir system, the magnitude of the flow velocity depends linearly on the height difference between reservoirs. The simple structure and operation mechanism make this pumping system versatile. A one-inlet-one-outlet system was used to continuously deliver media for perfusion cell culture, and an array of inlet reservoirs coupled to an outlet reservoir via microchannels was used to drive flows of multiple laminar streams. The parallel pumping scheme conveniently generated various smooth and step concentration gradients, and allowed evaluation of the effect of colchicine on myoblasts. Since the reservoir arrays are configured to be compatible with commercialized multichannel pipettors designed for 96 well plate handling, this simple pumping scheme is envisioned to be broadly useful for medium to high throughput microfluidic perfusion cell culture assays, cell migration assays, multiple laminar flow drug tests, and any other applications needing multiple microfluidic streams.  相似文献   

3.
Conventional droplet-based microfluidic systems require expensive, bulky external apparatuses, such as electric power supplies and pressure-driven pumps for fluid transportation. This study demonstrates an alternative way to produce emulsion droplets by autonomous fluid-handling based on the gas permeability of poly(dimethylsiloxane) (PDMS). Furthermore, basic concepts of fluid-handling are expanded to control the direction of the microfluid in the microfluidic device. The alternative pumping energy resulting from the high gas permeability of PDMS is used to generate water-in-oil (W/O) emulsions, which require no additional structures apart from microchannels. We can produce emulsion droplets by simple loading of the oil and aqueous solutions into the inlet reservoirs. During the operation of the microfluidic device, changes in droplet size, volumetric flow rate, and droplet generation frequency were quantitatively analyzed. As a result, we found that changes in the wetting properties of the microchannel greatly influence the volumetric flow rate and droplet generation frequency. This alternative microfluidic approach for preparing emulsion droplets in a simple and efficient manner is designed to improve the availability of emulsion droplets for point of care bioanalytical applications, in situ synthesis of materials, and on-site sample preparation tools.  相似文献   

4.
Automated cell culture in high density tubeless microfluidic device arrays   总被引:1,自引:0,他引:1  
Microfluidics is poised to have an impact on life sciences research. However, current microfluidic methods are not compatible with existing laboratory liquid dispensing and detection infrastructure. This incompatibility is a barrier to adoption of microfluidic systems and calls for improved approaches that will enhance performance and promote acceptance of microfluidic systems in the life sciences. Ease of use, standardized interfaces and automation remain critical challenges. We present a platform based on surface tension effects, where the difference in pressure inside drops of unequal volume drives flow in passive structures. We show integration with existing laboratory infrastructure, microfluidic operations such as pumping, routing and compartmentalization without discrete micro-components as well as cell patterning in both monolayer and three-dimensional cell culture.  相似文献   

5.
We use surface tension-based passive pumping and fluidic resistance to create a number of microfluidic analogs to electronic circuit components. Three classes of components are demonstrated: (1) OR/AND, NOR/NAND, and XNOR digital microfluidic logic gates; (2) programmable, autonomous timers; and (3) slow, perfusive flow rheostats. The components can be implemented with standard pipettes and provide a means of non-electronic and autonomous preprogrammed control with potential utility in cell studies and high throughput screening applications.  相似文献   

6.
An on-chip micropump for portable microfluidic applications was investigated using mathematical modeling and experimental testing. This micropump is activated by the addition of water, via a dropper, to ionic polymer particles that swell due to osmotic effects when wetted. The resulting particle volume increase deflects a membrane, forcing a separate fluid from an adjacent reservoir. The micropump components, along with the microfluidic components, are fabricated using the contact liquid photolithographic polymerization (CLiPP) method. The maximum flow rate achieved with this pump is 17 microL per minute per mg of dry polymer particles of 355-425 microm in diameter. The pump flow rate may be controlled by adjusting the particle size and amount, the membrane properties, and the channel dimensions. The experimental results demonstrate good agreement with an analytical model describing the particle swelling and its coupling with resistive forces from the bending membrane, viscous flow in the microchannel, and interfacial effects. Key features of this micropump are that it can be placed directly on a microdevice, and that it requires only a small amount of water and no external power supply to function. Therefore, this pumping system is useful for applications in which a highly portable device is required.  相似文献   

7.
Precise and reliable liquid delivery is vital for microfluidic applications. Here, we illustrate the design, fabrication, characterization, and application of a portable, low cost, and robust micropump, which brings solution to stable liquid delivery in microfluidic environment. The pump is designed with three optional speeds of different pumping flow rates, and it can be simply actuated by spring‐driven mechanism. The different flow rates of the pump are realized via passive microvalves in a compact microfluidic chip, which is installed in the pump. Importantly, the membrane structures of the microvalves allow accurate liquid control, and stable flow rates can be achieved via a spring setup. The proposed pump is applied to continuously and stably infuse microbead suspension into an inertial microfluidic chip, and good particle focusing is realized in the spiral channel of the inertial microfluidic chip. The proposed portable, self‐powered, and cost‐efficient pump is crucial for microfluidic lab‐on‐a‐chip system integration, which may facilitate microfluidic application for precise liquid delivery, control, measurement, and analysis.  相似文献   

8.
A design for a passive, air-breathing microfluidic fuel cell utilizing formic acid (FA) as a fuel is described and its performance characterized. The fuel cell integrates high surface area platinum (cathode) and palladium-platinum (anode) alloy electrodes within a PDMS microfluidic network that keeps them fully immersed in a liquid electrolyte. The polymer network that comprises the device also serves as a self-supporting membrane through which FA and oxygen are supplied to the alloy anode and cathode, respectively, by passive permeation from external sources. The cell is based on a planar form-factor and in its operation exploits FA concentration gradients that form across the PDMS membrane. These latter gradients allow the device to operate stably, producing a nearly constant limiting power density of ~0.2 mW/cm2, without driven laminar flow of fluids or the incorporation of an in-channel separator between the anodic and the cathodic compartments. The power output of this elementary device in air is subject to electrolyte mass transport impacts, which can be reduced for a given design rule by decreasing the internal ohmic resistance of the cell. The results suggest that operational stability can be improved by decreasing the kinetic losses imposed on the cathode side of the cell due to FA crossover and modalities for doing so, such as by increasing the efficiency of fuel capture at the anode.  相似文献   

9.
In this paper, we describe a microfluidic device in which solutions with stepwise concentrations can be accurately generated by continuously introducing two kinds of miscible liquids from each inlet, and biochemical processing can be conducted at the various conditions. Introduced liquid flows are geometrically divided into a number of downstream flows through multiple distribution channels, and each divided flow is then mixed with the divided flow of another liquid at a confluent point. The lengths of the precisely designed distribution channels determine the mixing ratio of the two liquids, without the influence of flow rate. In this study, a PDMS microfluidic device able to generate nine different concentrations was fabricated, and the performance of this device was estimated via colorimetric assay. As a biological application of this device, cell cultivation was performed under different concentration conditions. Due to its simplicity of operation, this microfluidic flow distributor will be applied to various kinds of biological analysis and screening systems.  相似文献   

10.
D Baigl 《Lab on a chip》2012,12(19):3637-3653
Using light to control liquid motion is a new paradigm for the actuation of microfluidic systems. We review here the different principles and strategies to induce or control liquid motion using light, which includes the use of radiation pressure, optical tweezers, light-induced wettability gradients, the thermocapillary effect, photosensitive surfactants, the chromocapillary effect, optoelectrowetting, photocontrolled electroosmotic flows and optical dielectrophoresis. We analyze the performance of these approaches to control using light many kinds of microfluidic operations involving discrete pL- to μL-sized droplets (generation, driving, mixing, reaction, sorting) or fluid flows in microchannels (valve operation, injection, pumping, flow rate control). We show that a complete toolbox is now available to control microfluidic systems by light. We finally discuss the perspectives of digital optofluidics as well as microfluidics based on all optical fluidic chips and optically reconfigurable devices.  相似文献   

11.
Microfluidic DNA microarray analysis: a review   总被引:1,自引:0,他引:1  
Microarray DNA hybridization techniques have been used widely from basic to applied molecular biology research. Generally, in a DNA microarray, different probe DNA molecules are immobilized on a solid support in groups and form an array of microspots. Then, hybridization to the microarray can be performed by applying sample DNA solutions in either the bulk or the microfluidic manner. Because the immobilized probe DNA binds and retains its complementary target DNA, detection is achieved through the read-out of the tagged markers on the sample target molecules. The recent microfluidic hybridization method shows the advantages of less sample usage and reduced incubation time. Here, sample solutions are confined in microfabricated channels and flow through the probe microarray area. The high surface-to-volume ratio in microchannels of nanolitre volume greatly enhanced the sensitivity as obtained with the bulk solution method. To generate nanolitre flows, different techniques have been developed, and this including electrokinetic control, vacuum suction and syringe pumping. The latter two are pressure-driven methods which are more flexible without the need of considering the physicochemical properties of solutions. Recently, centrifugal force is employed to drive liquid movement in microchannels. This method utilizes the body force from the liquid itself and there are no additional solution interface contacts such as from electrodes or syringes and tubing. Centrifugal force driven flow also features the ease of parallel hybridizations. In this review, we will summarize the recent advances in microfluidic microarray hybridization and compare the applications of various flow methods.  相似文献   

12.
Atomic emission detection of metallic species in aqueous solutions has been performed using a miniaturised plasma created within a planar, glass micro-fluidic chip. Detection was achieved using an Electrolyte as a Cathode Discharge source (ELCAD) in which the sample solution itself is used as the cathode for the discharge. To realise the ELCAD technique within a micro-fluidic device, a parallel liquid-gas flow was set up in a micro-channel and a glow discharge ignited between the flowing liquid sample surface and a metal wire anode. The detection of copper and sodium was achieved, using atmospheric pressure air as a carrier gas, by observation of atomic emission lines of copper at 324 nm, 327 nm, 511 nm, 515 nm and 522 nm and an atomic emission line of sodium at 589 nm using a commercially available miniaturised spectrometer. A total electrical power of less than 70 mW was required to sustain the discharge. A semi-quantitative, absolute detection limit of 17 nmol s(-1) was obtained for sodium with a sample flow rate of 100 microL min(-1) and an integration time of 100 ms in air at atmospheric pressure. The volume required for such detection is approximately 170 nL. Further analysis was performed with an Echelle spectrometer using both argon and air as a carrier gas. The geometry and flow rates used demonstrate the feasibility of integrating such micro-plasmas into other micro-fluidic devices, such as miniaturised CE devices, as a method of detection. The potential for using such micro-plasmas within highly portable miniaturised systems and mu-TAS devices is presented and discussed.  相似文献   

13.
We report a computerized microfluidic real time embryo culture and assay device that can perform automated periodic analyses of embryo metabolism. This automated program uses a modified "gated injection" scheme (sample injection, reagent mixing, enzyme reaction of 15 min incubation, and sample detection) to sequentially measure fluorescence from sample, reference, and background (without any analyte) every hour. Measurements assessed with reference solutions demonstrated the stability of these microfluidic measurements over a 24 h period. Furthermore, this system was able to measure time dependent nutrient consumption by single or multiple (10) live mouse blastocyst-stage embryos with pmol h(-1) sensitivity. Mechanical deformation-based microfluidic actuation created by computerized movement of Braille pins enables automated fluid pumping and valving sequences without unwanted gravity-driven backflow or exposure to electrical fields as would be required in electrokinetic schemes. The convenient, non-invasive, and automated nature of these assays open the way for the development of integrated microfluidic platforms for practical single embryo culture and real time biochemical analysis to assess embryo viability and select embryos with the greatest implantation potential, thus improving success in clinical assisted reproductive technology laboratories.  相似文献   

14.
温翰荣  朱珏  张博 《色谱》2021,39(4):357-367
微型化是现代分析仪器发展的重要趋势。微型化液相色谱仪器在提供与常规尺度液相色谱相同甚至更高分离效率的同时,可以有效减少溶剂和样品的消耗;在液相色谱-质谱联用中,低流速进样可以有效提高质谱离子源的离子化效率,提高质谱检测效率;对于极微量样品的分离,微型化的液相色谱可以有效减少样品稀释;液相色谱的微型化还有利于液相色谱仪器整体的模块化和集成化设计。芯片液相色谱是在微流控芯片上制备色谱柱并集成相应的流体控制系统和检测系统。芯片液相色谱是色谱仪器微型化的一种重要方式,受到学术界和产业界的普遍关注,但是这一方式也充满挑战。液相色谱微流控芯片需要在芯片基底材料、芯片色谱柱的结构设计、微流体控制技术、检测器技术等方面做出创新,使微流控芯片系统适配液相色谱分离技术的需要。目前芯片液相色谱领域面临的主要问题在于芯片基底材料的性质难以满足芯片液相色谱进一步微型化和集成化的需求;因此芯片液相色谱在未来的发展中需要着重关注新型微流控芯片基底材料的开发以及微流控芯片通道结构的统一设计。该文着重介绍了芯片液相色谱技术近年来的研究进展,并简要展示了商品化芯片色谱当前的发展情况。  相似文献   

15.
研究了用微流控芯片在体外模拟人体血液流动状态下细胞胞吞二氧化硅纳米粒子的方法和特性. 通过调节储液池的液面差, 使细胞从微通道入口流入并在通道内沉积贴壁生长. 将含有贴壁细胞的微流控芯片放入37 ℃/体积分数5%CO2的培养箱中, 使细胞培养液连续流过贴壁细胞. 培养24 h后, 在流动的培养液中加入作为荧光标记物的500 nm 粒径的掺杂有异硫氰酸荧光素(FITC)的二氧化硅微球(MSN), 继续培养6 h后, 用荧光显微镜测定细胞胞吞二氧化硅纳米粒子后的荧光强度, 考察了不同流速下细胞对二氧化硅微球摄入量的影响. 结果表明, 在动态条件下, 细胞对二氧化硅微球的吞噬量明显下降, 当流速从0.022 mm/s 增加至0.74 mm/s时, 吞噬量从静态测得值的74.7%下降至7.1%.  相似文献   

16.
A novel method for pumping very small volumes of liquid by using surface acoustic waves is employed to create a microfluidic flow chamber on a chip. It holds a volume of only a few μl and its planar design provides complete architectural freedom. This allows for the reconstruction of even complex flow scenarios (e.g. curvatures, bifurcations and stenosis). Addition of polymer walls to the planar fluidic track enables cell culturing on the chip surface and the investigation of cell–cell adhesion dynamics under flow. We demonstrate the flexibility of the system for application in many areas of microfluidic investigations including blood clotting phenomena under various flow conditions and the investigation of different stages of cell adhesion.  相似文献   

17.
Microfluidic hydrogen fuel cell with a liquid electrolyte   总被引:1,自引:0,他引:1  
We report the design and characterization of a microfluidic hydrogen fuel cell with a flowing sulfuric acid solution instead of a Nafion membrane as the electrolyte. We studied the effect of cell resistance, hydrogen and oxygen flow rates, and electrolyte flow rate on fuel cell performance to obtain a maximum power density of 191 mW/cm2. This flowing electrolyte design avoids water management issues, including cathode flooding and anode dry out. Placing a reference electrode in the outlet stream allows for independent analysis of the polarization losses on the anode and the cathode, thereby creating an elegant catalyst characterization and optimization tool.  相似文献   

18.
Significant advances have been made in developing microfluidic polymerase chain reaction (PCR) devices in the last two decades. More recently, microfluidic microdroplet technology has been exploited to perform PCR in droplets because of its unique features. For example, it can prevent crossover contamination and PCR inhibition, is suitable for single-cell and single-molecule analyses, and has the potential for system integration and automation. This review will therefore focus on recent developments on droplet-based continuous-flow microfluidic PCR, and the major research challenges. This paper will also discuss a new way of on-chip flow control and a rational design simulation tool, which are required to underpin fully integrated and automated droplet-based microfluidic systems. We will conclude with a scientific speculation of future autonomous scientific discoveries enabled by microfluidic microdroplet technologies.  相似文献   

19.
A passive pumping method for microfluidic devices   总被引:3,自引:0,他引:3  
Walker G  Beebe DJ 《Lab on a chip》2002,2(3):131-134
The surface energy present in a small drop of liquid is used to pump the liquid through a microchannel. The flow rate is determined by the volume of the drop present on the pumping port of the microchannel. A flow rate of 1.25 microL s(-1) is demonstrated using 0.5 microL drops of water. Two other fluid manipulations are demonstrated using the passive pumping method: pumping liquid to a higher gravitational potential energy and creating a plug within a microchannel.  相似文献   

20.
Roman GT  Kennedy RT 《Journal of chromatography. A》2007,1168(1-2):170-88; discussion 169
Over the past decade a tremendous amount of research has been performed using microfluidic analytical devices to detect over 200 different chemical species. Most of this work has involved substantial integration of fluid manipulation components such as separation channels, valves, and filters. This level of integration has enabled complex sample processing on miniscule sample volumes. Such devices have also demonstrated high throughput, sensitivity, and separation performance. Although the miniaturization of fluidics has been highly valuable, these devices typically rely on conventional ancillary equipment such as power supplies, detection systems, and pumps for operation. This auxiliary equipment prevents the full realization of a "lab-on-a-chip" device with complete portability, autonomous operation, and low cost. Integration and/or miniaturization of ancillary components would dramatically increase the capability and impact of microfluidic separations systems. This review describes recent efforts to incorporate auxiliary equipment either as miniaturized plug-in modules or directly fabricated into the microfluidic device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号