首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Current in silico tools were evaluated for their ability to predict metabolism and mass spectral fragmentation in the context of analytical toxicology practice. A metabolite prediction program (Lhasa Meteor), a metabolite detection program (Bruker MetaboliteDetect), and a fragmentation prediction program (ACD/MS Fragmenter) were used to assign phase I metabolites of the antipsychotic drug quetiapine in the liquid chromatography/time‐of‐flight mass spectrometry (LC/TOFMS) accurate mass data from ten autopsy urine samples. In the literature, the main metabolic routes of quetiapine have been reported to be sulfoxidation, oxidation to the corresponding carboxylic acid, N‐ and O‐dealkylation and hydroxylation. Of the 14 metabolites predicted by Meteor, eight were detected by LC/TOFMS in the urine samples with use of MetaboliteDetect software and manual inspection. An additional five hydroxy derivatives were detected, but not predicted by Meteor. The fragment structures provided by ACD/MS Fragmenter software confirmed the identification of the metabolites. Mean mass accuracy and isotopic pattern match (SigmaFit) values for the fragments were 2.40 ppm (0.62 mDa) and 0.010, respectively. ACD/MS Fragmenter, in particular, allowed metabolites with identical molecular formulae to be differentiated without a need to access the respective reference standards or reference spectra. This was well exemplified with the hydroxy/sulfoxy metabolites of quetiapine and their N‐ and O‐dealkylated forms. The procedure resulted in assigning 13 quetiapine metabolites in urine. The present approach is instrumental in developing an extensive database containing exact monoisotopic masses and verified retention times of drugs and their urinary metabolites for LC/TOFMS drug screening. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The last 2 years multi-compound methods are gaining ground as screening methods. In this study a high-resolution liquid chromatography combined with time-of-flight mass spectrometry (HRLC–ToF-MS) is tested for the screening of about 100 veterinary drugs in three matrices, meat, fish and egg. While the results are satisfactory for 70–90% of the veterinary drugs, a more efficient sample preparation or extract purification is required for quantitative analysis of all analytes in more difficult matrices like egg. The average mass measurement error of the ToF-MS for the veterinary drugs spiked at concentrations ranging from 4 to 400 μg/kg, is 3.0 ppm (median 2.5 ppm) with little difference between the three matrices, but slightly decreases with increasing concentration. The SigmaFit value, a new feature for isotope pattern matching, also decreases with increasing concentration and, in addition, shows an increase with increasing matrix complexity. While the average SigmaFit value is 0.04, the median is 0.01 indicating some high individual deviations. As with the mass measurement error, the highest deviations are found in those regions of the chromatogram where most compounds elute from the column, be it analytes or matrix compounds. The median repeatability of the method ranges from 8% to 15%, decreasing with increasing concentration, while the median reproducibility ranges from 15% to 20% with little difference between matrices and concentrations. The median accuracy is in between 70% and 100% with a few compounds showing higher values due to matrix interference. The squared regression coefficient is >0.99 for 92% of the compounds showing a good overall linearity for most compounds. The detection capability, CCβ, is within 2 times the associated validation level for >90% of the compounds studied. By changing a few conditions in the analyses protocol and analysing a number of blank samples, it was determined that the method is robust as well as specific. Finally, an alternative validation strategy is proposed and tested for screening methods. While the results calculated for repeatability, within-lab reproducibility and CCβ show a good comparison for the matrices meat and fish, and a reasonable comparison for the matrix egg, only 27 analyses are required to obtain these results versus 63 analysis in the traditional, 2002/657/EC, approach. This alternative is suggested as a cost-effective validation procedure for screening methods.  相似文献   

3.
The continuing emergence of designer drugs imposes high demands on the scope and sensitivity of toxicological drug screening procedures. An ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) method was developed for screening and simultaneous confirmation of both designer drugs and other drugs of abuse in urine samples in a single run. The method covered selected synthetic cannabinoids and cathinones, amphetamines, natural cannabinoids, opioids, cocaine and other important drugs of abuse, together with their main urinary metabolites. The database consisted of 277 compounds with molecular formula and exact monoisotopic mass; retention time was included for 192 compounds, and primary and secondary qualifier ion exact mass for 191 and 95 compounds, respectively. Following a solid-phase extraction, separation was performed by UHPLC and mass analysis by HR-TOFMS. MS, and broad-band collision-induced dissociation data were acquired at m/z range 50–700. Compound identification was based on a reverse database search with acceptance criteria for retention time, precursor ion mass accuracy, isotopic pattern and abundance of qualifier ions. Mass resolving power in spiked urine samples was on average FWHM 23,500 and mass accuracy 0.3 mDa. The mean and median cut-off concentrations determined for 75 compounds were 4.2 and 1 ng/mL, respectively. The range of cut-off concentrations for synthetic cannabinoids was 0.2–60 ng/mL and for cathinones 0.7–15 ng/mL. The method proved to combine high sensitivity and a wide scope in a manner not previously reported in drugs of abuse screening. The method’s feasibility was demonstrated with 50 authentic urine samples.
Figure
Extracted ion chromatograms of metabolites of synthetic cannabinoids and their fragments, including a new common metabolite: JWH-072-propanoic acid  相似文献   

4.
A method based on in-source collision-induced dissociation (ISCID) liquid chromatography time-of-flight mass spectrometry (LC-TOFMS) and reverse target database search was developed and evaluated for drug screening and confirmation in analytical toxicology context. An established LC-TOFMS screening method, in which identification relies solely on protonated molecule accurate mass measurement, isotopic pattern fit, and retention time (RT), was completed to include 1–3 qualifier ions for each analyte in the database. The qualifier ions for 431 compounds were selected from the experimental ISCID spectra, and their molecular formulae were assigned by applying SmartFormula3D and MSFragmenter software. Three qualifier ions were assigned for 64.5%, two or three for 81.4%, one for 14.8%, and none for 3.7% of the compounds studied. Comparison between ISCID LC-TOFMS and LC-TOFMS with 25 authentic autopsy urine samples showed an improved confidence level with the ISCID method, as isomeric interferences were excluded in most cases. However, some false negative (FN) results were obtained at low concentration levels close to the reporting criteria. The cut-off concentration of the ISCID method was 10–100 ng/mL with 80% of the 49 representative compounds tested, and the level was approximately two times higher than that obtained by LC ion trap MS. The presented method enables simultaneous screening and confirmation whenever at least one qualifier ion is available, as applying an accurate mass precursor ion and one product ion surpasses the standard of four identification points that is required by the current EU protocol.  相似文献   

5.
Orthogonal-acceleration quadrupole time-of-flight (oa-QTOF) mass spectrometers, employed for accurate mass measurement, have been commercially available for well over a decade. A limitation of the early instruments of this type was the narrow ion abundance range over which accurate mass measurements could be made with a high degree of certainty. Recently, a new generation of oa-QTOF mass spectrometers has been developed and these allow accurate mass measurements to be recorded over a much greater range of ion abundances. This development has resulted from new ion detection technology and improved electronic stability or by accurate control of the number of ions reaching the detector. In this report we describe the results from experiments performed to evaluate the mass measurement performance of the Bruker micrOTOF-Q, a member of the new-generation oa-QTOFs. The relationship between mass accuracy and ion abundance has been extensively evaluated and mass measurement accuracy remained stable (+/-1.5 m m/z units) over approximately 3-4 orders of magnitude of ion abundance. The second feature of the Bruker micrOTOF-Q that was evaluated was the SigmaFit function of the software. This isotope pattern-matching algorithm provides an exact numerical comparison of the theoretical and measured isotope patterns as an additional identification tool to accurate mass measurement. The smaller the value, the closer the match between theoretical and measured isotope patterns. This information is then employed to reduce the number of potential elemental formulae produced from the mass measurements. A relationship between the SigmaFit value and ion abundance has been established. The results from the study for both mass accuracy and SigmaFit were employed to define the performance criteria for the micrOTOF-Q. This provided increased confidence in the selection of elemental formulae resulting from accurate mass measurements.  相似文献   

6.
An integrated approach based on high resolution MS analysis (orbitrap), database (db) searching and MS/MS fragmentation prediction for the rapid identification of plant phenols is reported. The approach was firstly validated by using a mixture of phenolic standards (phenolic acids, flavones, flavonols, flavanones, flavanols, isoflavones). In particular, the integrated approach consists of the following steps: (1) LC-ESI-MS/MS analysis in data dependent scan mode using an orbitrap mass analyzer (resolution 60,000; positive ion-mode, ESI source); (2) searching the experimental monoisotopic masses (tolerance 1 ppm) in plant phenols databases; (3) filtering the entries on the basis of the phenol class to which the unknown belongs, as determined on the basis of the UV spectrum. Final identification is achieved by matching the isotopic pattern and by MS/MS fragmentation studies. In particular, experimental MS/MS fragments are matched with those predicted by a commercially available software. The method was then successfully applied for the rapid identification of phenolics contained in an EtOH extract of Angelica keiskei.  相似文献   

7.
We report herein, facile metabolite identification workflow on the anti-depressant nefazodone, which is derived from accurate mass measurements based on a single run/experimental analysis. A hybrid LTQ/orbitrap mass spectrometer was used to obtain accurate mass full scan MS and MS/MS in a data-dependent fashion to eliminate the reliance on a parent mass list. Initial screening utilized a high mass tolerance ( approximately 10 ppm) to filter the full scan MS data for previously reported nefazodone metabolites. The tight mass tolerance reduces or eliminates background chemical noise, dramatically increasing sensitivity for confirming or eliminating the presence of metabolites as well as isobaric forms. The full scan accurate mass analysis of suspected metabolites can be confirmed or refuted using three primary tools: (1) predictive chemical formula and corresponding mass error analysis, (2) rings-plus-double bonds, and (3) accurate mass product ion spectra of parent and suspected metabolites. Accurate mass characterization of the parent ion structure provided the basis for assessing structural assignment for metabolites. Metabolites were also characterized using parent product ion m/z values to filter all tandem mass spectra for identification of precursor ions yielding similar product ions. Identified metabolite parent masses were subjected to chemical formula calculator based on accurate mass as well as bond saturation. Further analysis of potential nefazodone metabolites was executed using accurate mass product ion spectra. Reported mass measurement errors for all full scan MS and MS/MS spectra was <3 ppm, regardless of relative ion abundance, which enabled the use of predictive software in determining product ion structure. The ability to conduct biotransformation profiling via tandem mass spectrometry coupled with accurate mass measurements, all in a single experimental run, is clearly one of the most attractive features of this methodology.  相似文献   

8.
Berndt P  Hobohm U  Langen H 《Electrophoresis》1999,20(18):3521-3526
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry of protein samples from two-dimensional (2-D) gels in conjunction with protein sequence database searches is frequently used to identify proteins. Moreover, the automatic analysis of complete 2-D gels with hundreds and even thousands of protein spots ("proteome analysis") is possible, without human intervention, with the availability of highly accurate mass spectrometry instruments, and high-throughput facilities for preparation and handling of protein samples from 2-D gels. However, the lack of software for precise automatic analysis and annotation of mass spectra, as well as software for in-batch sequence database queries, is increasingly becoming a significant bottleneck for the proteomics work flow. In the present paper we outline an algorithm for reliable, accurate, and automatic evaluation of mass spectrometric data and database searches. We show here that simply selecting from the sequence database the protein that has the most matching fragment masses often leads to false-positive results. Reliable protein identification is dependent on several parameters: the accuracy of fragment mass determination, the number of masses submitted for query, the mass distribution of query masses, the number of masses matching between sample and database protein, the size of the sequence database, and the kind and number of modifications considered. Using these parameters, we derive a simple statistical estimation that can be used to calculate the probability of true-positive protein identification.  相似文献   

9.
Electrospray ionization (ESI) of peptides and proteins produces a series of multiply charged ions with a mass/charge (m/z) ratio between 500 and 2000. The resulting mass spectra are crowded by these multiple charge values for each molecular mass and an isotopic cluster for each nominal m/z value. Here, we report a new algorithm simultaneously to deconvolute and deisotope ESI mass spectra from complex peptide samples based on their mass-dependent isotopic mean pattern. All signals corresponding to one peptide in the sample were reduced to one singly charged monoisotopic peak, thereby significantly reducing the number of signals, increasing the signal intensity and improving the signal-to-noise ratio. The mass list produced could be used directly for database searching. The developed algorithm also simplified interpretation of fragment ion spectra of multiply charged parent ions.  相似文献   

10.
建立了血液中抗抑郁类药物快速筛查的自动固相萃取-液相色谱-飞行时间质谱(ASPE-LC-Q-TOF/MS)方法。样品经HLB固相萃取柱提取后,采用LC-Q-TOF/MS进行测定,外标法定量。结果表明:目标物的线性范围为1~500 μg/L,相关系数为0.9976~0.9997,检出限为0.01~0.5 μg/L。在10、100和500 μg/L 3个添加水平的平均回收率为79.6%~96.4%,相对标准偏差为4.1%~6.4%。利用Agilent MassHunter PCDL Manager软件建立了抗抑郁类药物数据库,并应用于加标样品的筛查分析,本方法能够全部筛查出样品中添加的抗抑郁类药物,鉴定准确度达到100%,且保留时间偏差均小于0.1 min,质量偏差均小于1 mDa,同位素丰度匹配得分、同位素间距得分和MS匹配得分均大于95,MS/MS图谱匹配得分均大于70。利用本方法对实际案例进行筛查分析,检出阿米替林、卡马西平和多虑平,说明该方法可用于法庭与临床毒物分析。  相似文献   

11.
A liquid chromatography/time-of-flight mass spectrometry (LC-TOF-MS) method for targeted toxicological screening in human postmortem blood samples from forensic autopsy cases has been developed, validated and compared with a previously used method using gas chromatography with nitrogen–phosphorus detection (GC-NPD). Separation was achieved within 12 min by high-resolution gradient chromatography. Ions were generated in positive and negative electrospray ionization mode and were detected in 2-GHz single mass spectrometry mode, m/z range 50–1,000. Before injection, 0.25 g blood was prepared by protein precipitation with 500 μL of a mixture of acetonitrile and ethanol containing deuterated internal standards. An in-house database comprising 240 drugs and metabolites was built by analysing solutions from certified standards or other documented reference material available. Identification was based on scoring of retention time, accurate mass measurement and isotopic pattern. Validation was performed on spiked blood samples and authentic postmortem blood samples. The thresholds defined as minimum required performance levels were for most compounds in the range from 0.01 to 0.10 μg/g. Typically, a mass error of less than 2 ppm and a precision of area measurements of less than 5 % coefficient of variation were achieved. Positive identification was confirmed at concentrations up to 500 μg/g. Most compounds were determined in positive ionization mode, but for a limited number of compounds (fewer than 4 %) negative ionization was needed and a few early-eluted compounds could not be identified owing to substantial influence of interferences from the matrix and were thus not included in the screening. A robust and valid toxicological screening by LC-TOF-MS for postmortem blood samples, covering 50 % more compounds, and with higher precision and sensitivity than the previously used screening by GC-NPD was achieved.  相似文献   

12.
石银涛  王绘军  郭璟琦  丁静  王俊伟 《色谱》2016,34(5):538-542
建立了超高效液相色谱-四极杆-飞行时间串联质谱(UPLC-Q-TOF/MS)快速筛查血液中10种毒物的检测方法。用乙酸乙酯提取血液样品,浓缩至近干后,用甲醇溶解定容,过0.22 μ m滤膜后,直接测定。目标物经ACQUITY UPLC@BEH C18 色谱柱(100 mm×2.1 mm, 1.7 μ m)分离,以甲醇和0.1%(v/v)甲酸水溶液为流动相,梯度洗脱,四极杆飞行时间串联质谱电喷雾正离子模式检测,外标法定量。结果表明:目标物在10.0~500.0 μ g/L范围内线性关系良好,相关系数为0.9908~0.9958,检出限和定量限分别为1.0~2.0 μ g/L和4.0~8.0 μ g/L。在20.0、50.0和200.0 μ g/L 3个添加水平下的平均回收率为56.7%~83.0%, 相对标准偏差为3.6%~8.9%。利用Agilent Mass Hunter PCDL Manager软件建立常见毒物的数据库,并应用于加标样品的筛查分析。该方法能快速筛查出添加的10种常见毒物,检出率达100%,且保留时间偏差均小于0.1 min,质量偏差均小于1 mDa,同位素丰度匹配得分、同位素间距得分和MS匹配得分均大于90, MS/MS图谱匹配得分均大于70。该方法可用于法庭与临床毒物分析。  相似文献   

13.
In the present work, a novel database of drug compounds and a rapid screening method based on ultra‐high performance liquid chromatography coupled to high resolution orbitrap mass spectrometry were developed and applied in the screening and identification of targeted and nontargeted antihypertensive adulterants in dietary supplements and herbal medicines. The established screening database includes retention time, exact mass, fragments, isotopic pattern, and MS2 spectra library of the target compounds and thus provides automated search and identification of the targets with a single injection. The nontargeted compounds in the samples are identified through the full MS scan and MS2 data by using the Chemspider database and the data analysis in XCalibur, MassFrontier and TraceFinder software. In addition, this method possesses excellent quantitative capacity. The novel approach was applied to 65 batches of samples that are claimed as “all‐natural” products having the antihypertensive function, among which nine batches were found to be positive. Multiple targeted and nontargeted antihypertensive adulterants were detected at levels ranging from 2.8 to 27.9 mg/g. The novel database and screening method demonstrated herein will be promising and powerful tools for rapid screening of antihypertensive adulterants in dietary supplements and herbal medicines.  相似文献   

14.
A general screening method based on solid phase extraction (SPE) and liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) was developed and investigated with 124 different doping agents, including stimulants, -blockers, narcotics, -adrenergic agonists, agents with anti-estrogenic activity, diuretics and cannabinoids. Mixed mode cation exchange/C8 cartridges were applied to SPE, and chromatography was based on gradient elution on a C18 column. Ionization of the analytes was achieved with electrospray ionization in the positive mode. Identification by LC/TOFMS was based on retention time, accurate mass and isotopic pattern. Validation of the method consisted of analysis of specificity, analytical recovery, limit of detection and repeatability. The minimum required performance limit (MRPL), established by World Anti-Doping Agency (WADA), was attained to 97 doping agents. The extraction recoveries varied between 33 and 98% and the median was 58%. Mass accuracy was always better than 5 ppm, corresponding to a maximum mass error of 0.7 mDa. The repeatability of the method for spiked urine samples, expressed as median of relative standard deviations (RSD%) at concentrations of MRPL and 10 times MRPL, were 14% and 9%, respectively. The suitability of the LC/TOFMS method for doping control was demonstrated with authentic urine samples.  相似文献   

15.
High‐resolution mass spectrometry (HRMS) enables the identification of a chemical formula of small molecules through the accurate measurement of mass and isotopic pattern. However, the identification of an unknown compound starting from the chemical formula requires additional tools: (1) a database associating chemical formulas to compound names and (2) a way to discriminate between isomers. The aim of this present study is to evaluate the ability of a novel ‘metabolomic’ approach to reduce the list of candidates with identical chemical formula. Urine/blood/hair samples collected from real positive cases were submitted to a screening procedure using ESI‐MS‐TOF (positive‐ion mode) combined with either capillary electrophoresis or reversed phase liquid chromatography (LC). Detected peaks were searched against a Pharmaco/Toxicologically Relevant Compounds database (ca 50 500 compounds and phase I and phase II metabolites) consisting of a subset of PubChem compounds and a list of candidates was retrieved. Then, starting from the mass of unknown, mass shifts corresponding to pre‐defined biotransformations (e.g. demethylation, glucuronidation, etc.) were calculated and corresponding mass chromatograms were extracted from the total ion current (TIC) in order to search for metabolite peaks. For each candidate, the number of different functional groups in the molecule was automatically calculated using E‐Dragon software (Talete srl, Milan, Italy). Then, the presence of metabolites in the TIC was matched with functional groups data in order to exclude candidates with structures not compatible with observed biotransformations (e.g. loss of methyl from a structure not bearing methyls). The procedure was tested on 108 pharmaco‐toxicologically relevant compounds (PTRC) and their phase I metabolites were detected in real positive samples. The mean list length (MLL) of candidates retrieved from the database was 7.01 ± 4.77 (median, 7; range, 1–28) before the application of the ‘metabolomic’ approach, and after the application it was reduced to 4.08 ± 3.11 (median 3, range 1–17). HRMS allows a much broader screening for PTRC than other screening approaches (e.g. library search on mass spectra databases). The ‘metabolomic’ approach enables the reduction of the list of candidate isomers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A dual-ESI-sprayer system was constructed and applied to achieve high accuracy of peptide mass measurement for protein identification by means of peptide mapping. Sample was introduced in one sprayer, and reference in the other, thus making internal calibration possible greatly enhancing the mass accuracy. Several samples were utilized to evaluate the reliability of this dual-ESI-sprayer system. The range of mass errors was 0.16-5.37 ppm. The peptide masses of tryptic digests of myoglobin (horse) were measured by the HPLC/dual-ESI-MS system, with mass deviations ranging from 0.01-7.67 ppm, and about 75% mass deviations below 5 ppm with 40% below 1[?]ppm. These peptide masses were utilized to perform database searching for protein identification, and compared to results obtained by external calibration. This comparison showed that the internal calibration provides a more reliable method of protein identification, with a much smaller number of required peptides for matching, and with less CPU time consumed for database searching.  相似文献   

17.
The present study describes a novel approach for utilizing liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) in qualitative screening analysis. An LC/TOFMS method was developed for screening toxicologically relevant substances in urine samples. After solid phase extraction and LC separation, the method included full spectrum acquisition followed by automatic internal calibration, searching against a target library, and reporting positive identifications. The target library, containing 433 toxicologically relevant substances in the mass range of 105-734 Da, was created simply by entering the elemental formulas of substances into the instrument software for the calculation of their respective monoisotopic masses. In addition to parent drugs, the library contained selected urinary drug metabolites, based on their structures available in the literature. Identification was based on the exact masses of the compounds. The LC/TOFMS method provided 5-10 ppm mass accuracy for a majority of identified compounds in authentic urine samples. Compared with established thin-layer and gas chromatographic methods, the LC/TOFMS method produced similar findings in urine with the additional advantage of metabolite identification without actual reference substances.  相似文献   

18.
In this study we have developed and evaluated an analytical method for a rapid automated screening and confirmation of a large number of organic micro-contaminants (almost 400) and also the quantification of the positive findings in water samples of different types (surface and wastewaters) using liquid chromatography-electrospray quadrupole-time-of-flight mass spectrometry (LC-QTOFMS) based on the use of an accurate-mass database. The created database includes data not only on the accurate masses of the target ions but also on the characteristic in-source fragment ions, isotopic pattern and retention time data. This customized database was linked to commercially available software which extracted all the potential compounds of interest from the LC-QTOFMS raw data of each sample and matched them against the database to search for targeted compounds in the sample. The detailed fragmentation information has also been used as a powerful tool for the automatic identification of unknown compounds and/or transformation products with similar structures to those of known organic contaminants included in the database. The database can be continually enlarged. To confirm identification of compounds which have no fragment ions (or fragments with low intensity/relative abundance) from in-source CID fragmentation or isomers which are not distinguished within full single mass spectra, a "Targeted MS/MS" method is developed. Thereafter, these compounds can be further analyzed using the collision energy (CE) in QTOF-MS/MS mode. Linearity and limits of detection were studied. Method detection limits (MDLs) in effluent wastewater and river waters were, in most cases, lowers or equal to 5 and 2 ng/L, respectively. Only 15 compounds had MDLs between 5 and 50 ng/L in effluent wastewater matrix. We obtained a linearity of the calibration curves over two orders of magnitude. The method has been applied to real samples and the results obtained reveal that most of the pharmaceutically active compounds contained in the created database were present in the water samples with concentrations in the range of ng/L and μg/L levels and in most of the samples between 2 and 15 pesticides of the 300 contained in the database were also detected. In addition to the compounds included in the database, some degradation products were found, thus revealing the method as a useful tool for the analysis of organic micro-contaminants in waters.  相似文献   

19.
A new doping control screening method has been developed, for the analysis of doping agents in human urine, using HPLC/orbitrap with in-source collision-induced dissociation and atmospheric pressure chemical ionization. The developed method allows the detection of 29 compounds, including agents with antiestrogenic activity, beta(2) agonists, exogenous anabolic steroids, and other anabolic agents. The mass accuracy of this method is better at 2 ppm using an external reference. The detection limit for all compounds tested was better than 100 pg/ml. The recoveries of most analytes were above 70%. The measured median repeatability values for doping agents included in the method at concentrations of 1 and 10 ng/ml were 21 and 17%, respectively. The relative standard deviation (RSD) of the intraday precision (n = 6) ranged from RSD = 16-22%, whereas the interday precision (n = 18), ranged from RSD = 17-26%, depending on the solute concentration investigated.  相似文献   

20.
The results from an intercomparison of accurate mass measurement of a small molecule (molecular weight 475 Da) across a broad range of mass spectrometers are reported. The intercomparison was designed to evaluate the relative capabilities and the optimum methodology of the diverse range of mass spectrometers currently used to record accurate mass measurements. The data will be used as a basis for developing guidance on accurate mass measurement. The need for guidance has resulted from the continued growth in the use of accurate mass measurements for assignment of elemental formula in the chemical and biochemical industries. This has been fuelled by a number of factors and includes the rapid pace of instrument development, which has enabled accurate mass measurements to be made in a less costly, yet robust fashion. The data from the intercomparison will allow us to compare those protocols that produced excellent accuracy and precision with those that produced poorer accuracy and/or precision for each type of mass spectrometer. The key points for best practice will then be established from this comparison for each type of mass spectrometer and accurate mass measurement technique. A compound was sent to the participating laboratories (in the UK, Europe, and USA), the identity of which was not revealed. Each laboratory was asked to record a minimum of five repeat mass measurements of the molecular species using their local protocols and their preferred ionization technique or techniques. To the best of our knowledge there were no interfering (unresolved) ions that originated from the sample. A questionnaire was also completed with the experimental work. The information from the questionnaires was used to evaluate the protocols used to record the measurements. Forty-five laboratories have reported their results. To summarize the performance of mass spectrometers in the intercomparison, magnetic sector field mass spectrometers used in peak matching mode and FTMS reported the highest mean mass measurement accuracy (88 and 83%, respectively, achieved < or =1 ppm). Magnetic sector field mass spectrometers used in voltage scanning produced 60% of the mean mass measurements with accuracy < or =1 ppm. Magnetic sector field mass spectrometers used in magnet scanning modes, quadrupole-TOF and TOF instruments generally achieved mean mass measurement accuracy between 5 and 10 ppm. The two low resolution triple quadrupoles used in the inter-comparison produced mean mass measurement accuracy of <2 ppm. The precision of the data from each instrument and experiment type is an important consideration when evaluating their relative capabilities. Using both the precision and accuracy, it will be possible to define the uncertainty associated with the elemental formulae derived from accurate mass measurements. Therefore, a thorough statistical evaluation of the data is underway and will be presented in a subsequent publication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号