首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A series of optically active P‐chiral oligophosphines (S,R,R,S)‐ 2 , (S,R,S,S,R,S)‐ 3 , (S,R,S,R,R,S,R,S)‐ 4 , and (S,R,S,R,S,R,R,S,R,S,R,S)‐ 5 with four, six, eight, and 12 chiral phosphorus atoms, respectively, were successfully synthesized by a step‐by‐step oxidative‐coupling reaction from (S,S)‐ 1 . The corresponding optically inactive oligophosphines 1′ – 5′ were also prepared. Their properties were characterized by DSC, XRD, and optical‐rotation analyses. While optically active bisphosphine (S,S)‐ 1 and tetraphosphine (S,R,R,S)‐ 2 behaved as small molecules, octaphosphine (S,R,S,R,R,S,R,S)‐ 4 and dodecaphosphine (S,R,S,R,S,R,R,S,R,S,R,S)‐ 5 exhibited the features of a polymer. Furthermore, DSC and XRD analyses showed that hexaphosphine (S,R,S,S,R,S)‐ 3 is an intermediate between a small molecule and a polymer. Comparison of optically active oligophosphines 1 – 5 with the corresponding optically inactive oligophosphines 1′ – 5′ revealed that the optically active phosphines have higher crystallinity than the optically inactive counterparts. It is considered that the properties of oligophosphines depend on the enantiomeric purity as well as the oligomer chain length.  相似文献   

2.
Reactivity of 2-hydroxy-4-oxo-4H-pyrido[1,2-a]pyrimidine-3-carbaldehyde (I) towards N- and C-nucleophiles was described. A series of new enaminones II–III, Schiff’s base IV, and hydrazinomethylenediketones V–VIII and X were prepared in good yields. Cyclization of compounds X was achieved by an action of acetic acid to give pyrazolo[3,4-d]pyrido[1,2-a]pyrimidines XI. Base catalyzed Knoevenagel condensation of aldehyde I with some active methyl and methylene compounds led to a series of chalcone-like derivatives XII, XV, XVII, XX, XXIII, XXV, XXVII, XXIX, XXXI, XXXII, and XXXV, in fair yields. Cyclization of enones XII, XV, and XX with hydrazine gave novel heterocyclyl substituted pyrazoles XIII, XVII, and XXI, respectively. Pyrano[2,3-d]pyrido[1,2-a]pyrimidine-2,5-diones XXXIII, XXXIV, and XXXVI derivatives were obtained via cyclization of their respective enone derivatives.  相似文献   

3.
The construction of new or novelly functionalized annulated and bridged tricylic compounds by two consecutive C,C-bond formations (a and b in la , Scheme 1) is described. In a first step, chloroalkyl-substituted aminonitriles yielded pyrrolidines 8 , 15a , 15b , 23 , 25 and piperidine 18 by carbanionic ring closure (Schemes 5, 6, 7 and 8). Subsequent Friedel-Crafts cyclization transformed the β-aminonitriles 8 , 15a , 15b , and 18 either directly or via their carboxylic acid derivatives to the indeno [1, 2-c]pyrrole, 2, 5-methano-3-benzazocine, benz [f]isoindoline and 1, 4-ethano-2-benzazapine skeletons 11 , 16a , 16b and 21 , respectively (Schemes 5, 6 and 7). By classical ring expansion reactions the pyrrolo [3, 4-c]isoquinoline and benzopyrano-[3, 4-c]pyrrole skeletons 28 resp. 31 were obtained from 11 (Scheme 9).  相似文献   

4.
The C3‐symmetric propeller‐chiral compounds (P,P,P)‐ 1 and (M,M,M)‐ 1 with planar π‐cores perpendicular to the C3‐axis were synthesized in optically pure states. (P,P,P)‐ 1 possesses two distinguishable propeller‐chiral π‐faces with rims of different heights named the (P/L)‐face and (P/H)‐face. Each face is configurationally stable because of the rigid structure of the helicenes contained in the π‐core. (P,P,P)‐ 1 formed dimeric aggregates in organic solutions as indicated by the results of 1H NMR, CD, and UV/Vis spectroscopy and vapor pressure osmometry analyses. The (P/L)/(P/L) interactions were observed in the solid state by single‐crystal X‐ray analysis, and they were also predominant over the (P/H)/(P/H) and (P/L)/(P/H) interactions in solution, as indicated by the results of 1H and 2D NMR spectroscopy analyses. The dimerization constant was obtained for a racemic mixture, which showed that the heterochiral (P,P,P)‐ 1 /(M,M,M)‐ 1 interactions were much weaker than the homochiral (P,P,P)‐ 1 /(P,P,P)‐ 1 interactions. The results indicated that the propeller‐chiral (P/L)‐face interacts with the (P/L)‐face more strongly than with the (P/H)‐face, (M/L)‐face, and (M/H)‐face. The study showed the π‐face‐selective aggregation and π‐face chiral recognition of the configurationally stable propeller‐chiral molecules.  相似文献   

5.
The Pseudomonas species lipase inhibition shows enantioselectivity for R‐enantiomer over S‐enantiomer of exo‐2‐norbornyl‐Nn‐butylcarbamates. R‐, S‐, and racemic‐exo‐2‐norbornyl‐Nn‐butylcarbamates are all characterized as pseudo substrate inhibitors of the enzyme. Thus, the mechanism for Pseudomonas species lipase‐catalyzed hydrolysis of the inhibitor is formation of the first enzyme‐inhibitor Michaelis complex via nucleophilic attack of the active site serine to the inhibitor (Ki step) then formation of the butylcarbamyl enzyme intermediate from this complex (k2 step). Comparison of bimolecular rate constants (ki = k2 / Ki) of the inhibitors indicates that R‐enantiomer is 1.8 times more potent than S‐enantiomer. Thus, Pseudomonas species lipase shows enantioselectivity of 1.8 for Rexo‐2‐norbornyl‐Nn‐butyl‐carbamate over Sexo‐2‐norbornyl‐Nn‐butylcarbamate. Protein‐ligand interaction studies on both enantiomers of exo‐2‐norbornyl‐Nn‐butylcarbamate as inhibitors of Pseudomonas species lipase using AutoDock suggest that R‐enantiomer binds more tightly into the active site of the enzyme than S‐enantiomer. The norbornyl ring of Sexo‐2‐norbornyl‐Nn‐butylcarbamate is repulsive to Ser 82 and His 251 of the catalytic triad as well as to Met 16 of the oxyanion hole. These repulsions may create few unfavorable interactions between Sexo‐2‐norbornyl‐Nn‐butylcarbamate and the enzyme and make this inhibitor a less potent one.  相似文献   

6.
A series of neutral gelators and cationic amphiphiles derived from 1,2 diphenylethylenediamine (I) and 1,2-cyclohexanediamine (II) was synthesised. Helical silica nanotubes were prepared utilising these organic gelators through sol-gel polycondensation of tetraethoxy silane, (TEOS-silica source). Right- and left-handed helical nanotubes respectively were obtained from a 1: 1 mass mixture of optically active, (1S,2S)-III-(1S,2S)-V neutral gelator and (1S,2S)-IV-(1S,2S)-VI cationic amphiphile and a 1: 1 mass mixture of optically active, (1R,2R)-III-(1R,2R)-V neutral gelator and (1R,2R)-IV-(1R,2R)-VI cationic amphiphile, indicating that the handedness of the helical nanotubes varied with the change in the neutral gelator precursors used. The nanotubes were characterised by SEM images.  相似文献   

7.
(Z)-2-Butenyl-dimethoxyborane adds smoothly to propanal and benzaldehyde to afford the homoallyl alcohols (R*,R*)- 1 and (R*,R*)- 2 , In contrast (E)-2-butenyl-dimethoxyborane leads to adducts having the (R*,S*)-configuration. Dimethoxy-(Z)-2-pentenylborane, dimethoxy-(Z)-(2-methyl-2-butenyl)borane and (2Z,4E)-or (2E,4Z)hexadienyl-dimethoxyborane, treated with propanal, give (R*,R*)- 3 , (R*,R*)- 4 , (E),(R*,S*)- 5 and (Z),(R*, R*)- 5 , respectively. A transition state model implying a pericyclic electron motion is in perfect agreement with the regio- and stereoselective outcome of these borane reactions.  相似文献   

8.
N-o-, -m-, and -p-carboxyphenyl-D-glucosylamines and N-o-, -m-, and -p-hydroxyphenyl-D-glucosylamines were synthesized by reaction of D-glucose with o-, m-, and p-aminobenzoic acids and o-, m-, and p-aminophenols. It was demonstrated that both - and -anomers were formed by N-glycosylation of o-, m-, and p-aminobenzoic acids; only -anomers, by N-glycosylation of o-, m-, and p-aminophenols.  相似文献   

9.
The Friedel-Crafts monoacylation of trans-η-[(1RS,2RS,4SR,5SR,6RS,7SR,8SR)-C,5,6,C-η:C,7,8,C-η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 5 ) is highly stereoselective and yields trans-η-[(1RS,2RS,4RS,5SR,6RS,7RS,8SR)-C,6-η,oxo-σ:C,7,8,C-η-(6,7,8-trimethylidene-5-((Z)-2-oxopropylidene)-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 8 ) which equilibrates with the trans-η-[(1RS,2RS,4RS,5SR,6RS,7RS,8SR)-C,5,6,C-η:C,7,8,C-η-(6,7,8-trimethylidene-5-((Z)-2-oxopropylidene)-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 9 ) on heating. Optically pure (–)- 9 has been prepared from the corresponding optically pure alcohol (+)- 4 . The structure and absolute configuration of (–)- 9 was established by single-crystal X-ray diffraction.  相似文献   

10.
We call a subgroup H of a finite group G c-supplemented in G if there exists a subgroup K of G such that G = HK and HK ≤ core(H). In this paper it is proved that a finite group G is p-nilpotent if G is S 4-free and every minimal subgroup of PG N is c-supplemented in N G(P), and when p = 2 P is quaternion-free, where p is the smallest prime number dividing the order of G, P a Sylow p-subgroup of G. As some applications of this result, some known results are generalized.  相似文献   

11.
Topological indices are numerical parameters of a molecular graph, which characterize its topology and are usually graph invariant. In quantitative structure–activity relationship/quantitative structure–property relationship study, physico‐chemical properties and topological indices such as Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) index are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4, and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The glow curve deconvolution (GCD) analysis of a composite thermoluminescence (TL) glow curve into its individual glow-peaks needs appropriate equations describing a single glow peak. In the present work, new single glow peak equations are presented, which are produced by transformation of the I(n 0,E,s,T) and I(n 0,E,s,b,T) single glow-peak equations into I(I m,T m,E,T) and I(I m,T m,E,b,T), respectively. Moreover, equations of the forms I(I m,T m,w,b,T) are also introduced. The proposed equations have two basic advantages: (1) they use parameters, which are directly obtained from the experimental glow peaks and (2) their accuracy is equal to that of the original thermoluminescence single glow-peak equations.  相似文献   

13.
Two trans stereoisomers of 3‐methylcyclopentadecanol (=muscol), (1R,3R)‐ 2 and (1S,3S)‐ 2 , were efficiently synthesized from (3RS)‐3‐methylcyclopentadecanone (=muscone; (3RS)‐ 1 ) by a highly stereoselective reduction (Scheme). L‐Selectride® (=lithium tri(sec‐butyl)borohydride) was used, followed by the enantiomer resolution by lipase QLG (Alcaligenes sp.). The cis stereoisomers of muscol, (1S,3R)‐ 2 and (1R,3S)‐ 2 , were obtained by the Mitsunobu inversion of (1R,3R)‐ 2 and (1S,3S)‐ 2 , respectively (Scheme). The absolute configuration of (1R,3R)‐ 2 was determined by X‐ray crystal‐structure analysis of its 3‐nitrophthalic acid monoester, 2‐[(1R,3R)‐3‐methylcyclopentadecyl hydrogen benzene‐1,2‐dicarboxylate ((1R,3R)‐ 3b ), and by oxidation of (1R,3R)‐ 2 to (3R)‐muscone.  相似文献   

14.
A modified Gaussian function g(u, v, w, a, R ) = const s(a, R ) is considered where l = u + v + w, s (a, R ) is a 1s-type Gaussian function centered at R , a is the coefficient in the exponent of the 1 s Gaussian function and X, Y, Z are components of R . General formulae are derived for overlap integrals, kinetic energy integrals, nuclear attraction integrals, and electron repulsion integrals, valid for any l. The formulae are much simpler than those derived by Huzinaga for Cartesian Gaussian functions.  相似文献   

15.
For a connected graph G, the Hosoya polynomial of G is defined as H(G, x) = ∑{u,v}?V(G)xd(u, v), where V(G) is the set of all vertices of G and d(u,v) is the distance between vertices u and v. In this article, we obtain analytical expressions for Hosoya polynomials of TUC4C8(R) nanotubes. Furthermore, the Wiener index and the hyper‐Wiener index can be calculated. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

16.
Syntheses of Enantiomerically Pure Violaxanthins and Related Compounds The epoxides 16 and ent- 16 , prepared by Sharpless-Katsuki oxidation of 15 in excellent yield and very high enantiomeric purity, were used as synthons for the preparation of (+)-(S)-didehydrovomifoliol (45) , (+)-(6S, 7E, 9E)-abscisic ester 46 , (+)-(6S, 7E, 9Z)-abscsic ester 47 , (?)-(3S, 7E, 9E)-xanthoxin (49) , (?)-(3R, 7E, 9E)-xanthoxin (50) , (3S, 5R, 6S, 3′S,5′R, 6′S, all-E)-violaxanthin (1) (3R, 5R,6S,3′R,5′R,6′S, all-E)-violaxanthin (55) and their (9Z) (see 53 , 57 ), (13Z) (see 54 , 58 ), and (15Z) (see 60 ) isomers. The novel violadione ( 61 ) was prepared from 1 by oxidation with DMSO/Ac2O. By base treatment, 61 was converted into violadienedione (62) , a potential precursor of carotenoids with phenolic end groups.  相似文献   

17.
2-Arylamino-4,6-dichloro-s-triazine reacts with cyanuric chloride in the presence of alkali to yield N,N-bis(4,6-dichloro-s-triazin-2-yl)-arylamine. In like manner, 2-substituted o-chloro-, p-chloro-, o-nitro- and p-carbomethoxyphenylamino-4,6-dimethoxy-s-triazines react with cyanuric chloride to yield the corresponding 4,6-dichloro-s-triazin-2-yl-4′,6′-dimethoxy-s-triazin-2′-ylaryl-amine, while anilino-, p-toluidino, o- and p-methoxyphenylamino and o-carbomethoxyphenylamino derivatives did not. The reaction of cyanuric chloride with 2,4-dichloro-6-ethylamino-s-triazine in the presence of alkali yields the condensation product of the ditriazinylamine type and the reaction of cyanuric chloride with ammonia yields N,N-bis(4,6-dichloro-s-triazin-2-yl)- or tris(4,6-dichloro-s-triazin-2-yl)amine.  相似文献   

18.
For a connected graph G we denote by d(G,k) the number of vertex pairs at distance k. The Hosoya polynomial of G is H(G,x) = ∑k≥0 d(G,k)xk. In this paper, analytical formulae for calculating the polynomials of armchair open‐ended nanotubes are given. Furthermore, the Wiener index, derived from the first derivative of the Hosoya polynomial in x = 1, and the hyper‐Wiener index, from one‐half of the second derivative of the Hosoya polynomial multiplied by x in x = 1, can be calculated. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

19.
On the bases of the topological structures of the three big classes of icosahedral fullerenes: (1) Cn(Ih, n=60h2; h=1, 2,…), (2) Cn(Ih, n=20h2; h=1, 2,…), and (3) Cn(I, n=20(h2+hk+k2), h>k; h, k=1, 2,…), we derived formulas for the decomposition of their nuclear motions into irreducible representations. Hence, we obtained the infrared and Raman active modes for all of the icosahedral (Ih and I) fullerenes theoretically. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 113–117, 1998  相似文献   

20.
Summary: Biodegradation of film specimens from polyhydroxyalkanoates (PHAs) of two types – poly-3-hydroxybutyrate (PHB) and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) – was analysed in different environments: tropical sea waters of the South China Sea (Nha Trang, Vietnam) and soils in the environs of Hanoi (Vietnam), Nha Trang (Vietnam) and Krasnoyarsk (Siberia, Russia). In seawater, the mass loss of the specimens of both types was almost equal. However, in tropical soils, PHB degraded quicker than PHBV. In the Siberian soil, the degradation rate of the PHBV was generally higher than that of PHBV. Analysis of molecular mass of PHA specimens showed its decreasing during biodegradation. In the tropical sea conditions, PHA degrading microorganisms were represented by bacteria of Enterobacter, Bacillus and Gracilibacillus genera. Among PHA degrading bacteria, Burkholderia, Alcaligenes, Bacillus, Mycobacterium and Streptomyces genera were identified in Vietnamese soils, and Variovorax, Stenotrophomonas, Acinetobacter, Pseudomonas, Bacillus and Xanthomonas genera in Siberian soils. Micromycetes of Gongronella, Paecilomyces, Penicillium and Trichoderma genera exhibited PHA degrading activity in Vietnamese soils, and Paecilomyces, Penicillium, Acremonium, Verticillium and Zygosporium genera – in Siberian soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号