首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Simple, rapid and inexpensive one-step reverse micellar microextraction (RMME) procedures were combined with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for the determination of thiol-containing peptides and amino acids. In this investigation, a thiol-containing peptide (HW6) was chosen as model compound to understand the mechanism of RMME. The electrostatic interactions between the thiol-containing peptide and reverse micelles were proposed to be reason for the transfer of analytes from the aqueous phase to the organic phase. Reverse micelles were formed by the cationic surfactant, methyltrioctylammonium chloride (MTOAC). The best extraction efficiency of HW6 was obtained under the following conditions: pH 11.0, ionic strength 5.0 mM of KCl and micelle concentration 7.0 mM of MTOAC. The limits of detection (LODs) obtained for HW6 in water, urine and plasma samples were 0.15, 0.19 and 0.28 microM, respectively, with relative standard deviation (RSD) values in the range +/-8.8-10.5%. The sensitivity obtained in water by the present method was 45-fold higher than that of the conventional use of atmospheric-pressure (AP)-MALDI MS. Furthermore, the applicability of the proposed approach was extended for the determination of thiol-containing amino acids in sample solutions by using MALDI time-of-flight (TOF) MS.  相似文献   

2.
We report the application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the accurate measurement of mass of low molecular weight compounds (smaller than 1500 Da), a linear peptide, two types of cyclic depsipeptides, a polyhydroxy-macrocyclic lactone, and two prenylated flavonoids, with delayed extraction in the reflector mode. The performance of the MALDI-TOF instrument was less than those of fast atom bombardment and Fourier-transform ion cyclotron resonance mass spectrometry instruments and insufficient to give acceptable accuracy for literature reporting. Nevertheless, when combined with NMR spectrometry and/or amino acid analysis to give information on the numbers of carbon atoms and index of hydrogen deficiency, MALDI was useful for determination of the elemental composition of the low molecular weight compounds available in small quantities.  相似文献   

3.
The analysis of peptide mixtures from urine and plasma samples using bare (uncapped) SiO2 nanoparticles (NPs) with atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) has been reported. The method was based on the adsorption of positively charged peptides on the surface of negatively charged SiO2 NPs through the electrostatic force of attraction. The adsorption on the surface of SiO2 NPs caused enhancement of ionization efficiency of analytes and subsequently increased the signal intensity of peptides. Maximum signal intensity was obtained at optimized concentration of SiO2 NPs and pH of the aqueous solution. The limits of detection (LODs) obtained for different peptides in deionized water with and without using SiO2 NPs were in the range 4.7-360 nM and 0.1-18.0 microM, respectively. The sensitivity of the proposed method was 21-53-fold better than conventional use of AP-MALDI-MS. In addition, linearity in the range 9.5-95 nM was obtained for the peptide angiotensin-II in deionized water with a correlation of estimation of 0.992 using an internal standard. The proposed method provided a simple way to facilitate the ionization of peptides, reduce sample complexity and increase the tolerance to salts and surfactants in the analysis of biological samples. The applicability of the present method was also demonstrated in the real-world sample analysis of aminothiols and lysozyme using MALDI-time-of-flight (TOF)-MS.  相似文献   

4.
Free 9-aminoacridine base is demonstrated to be a suitable matrix for negative mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis of a wide range of low molecular weight organic acids including aliphatic (from acetic to palmitic acid), aromatic acids, phytohormones (e.g. jasmonic and salicylic acids), and amino acids. Low limits of quantitation in the femtomolar range (jasmonic - 250 fmol; caffeic - 160 fmol and salicylic - 12.5 fmol) and linear detector response over two concentration orders in the pico- and femtomolar range are extremely encouraging for the direct study of such acids in complex biological matrices.  相似文献   

5.
Single drop microextraction (SDME) coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been applied for direct analysis of hydrophobic peptides (valinomycin and gramicidin D) from biological samples (urine and plasma) in high salt solution. The optimal conditions such as selection of extraction solvent, stirring rate, extraction time, effect of salt concentration and matrix-to-analyte ratio were investigated. The limits of detection (LODs) were found to be 73 nM to 170 nM for valinomycin and 96 nM to 5.5 μM for gramicidin D in high salt solution (1.7 M of NaCl) in MALDI-MS. The current approach can enhance the LODs by 11-320-fold for gramicidin D analysis in water, urine and plasma in high salt solution. Furthermore, the current approach has been successfully demonstrated for real-world sample analysis (β-carotene from carrots) by MALDI-MS. The current approach is a rapid, simple and efficient clean-up platform for direct analysis of hydrophobic molecules in biological samples from high salt solution.  相似文献   

6.
Trimethyamine (TMA) and trimethylamine N-oxide (TMAO) are the most important urine parameters for diagnosing and monitoring trimethylaminuria. A rapid, simple, and specific method based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was developed to determine the presence of TMA and TMAO in urine samples from patients with trimethylaminuria. Formation of the quaternary tetramethylamino iodide by derivatization of TMA with methyl iodide allows measurement of TMA by MALDI-TOFMS. The method is repeatable and reproducible, with coefficients of variance (CVs)<3%. This new method was used for direct determination of TMA and TMAO in urine specimens obtained from normal children and patients. The proposed method allows for rapid and reliable measurements of TMA and TMAO in urine specimens from patients affected by trimethylaminuria.  相似文献   

7.
We report the application of matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry, with delayed extraction in the reflectron mode, for the characterization of low molecular weight dendrimers. 20 dendrimer samples were measured and 4 typical dendrimers, as examples, are discussed in detail. Several factors that affect the analysis including the matrices used, the concentrations of sample, the solvents and cationization reagent used, were investigated in detail. Experimental results indicate that the type of solvent can greatly influence exact mass measurement. However, sample preparation is generally not very critical for dendrimer analysis using MALDI-ToF since many kinds of matrices and a wide range of sample concentrations can be used efficiently. In addition, the Cs(+) ion can be used to enhance the efficiency of cationization. Some reasons for this behavior are discussed on the basis of results of calculations using Gaussian94 software (a connected system of programs for performing a variety of semi-empirical and ab initio molecular orbital (MO) calculations).  相似文献   

8.
Neutral and acidic oligosaccharides from human milk were analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS). These experiments require suitable matrices; their selection and particularly their preparation protocols must be optimized. Important criteria are sensitivity, reproducibility, tolerance against impurities and resolution over a wide mass range. For analytical investigations of these oligosaccharides, containing labile fucosylated and sialylated components, another property of a matrix becomes a significant factor, namely the influence on ion stability and the extent of (metastable) fragmentation. The experience gained with the MALDI/MS of neutral and acidic oligosaccharides is summarized taking into account different intentions of measurement and typical problems, such as impurities after enzymatic treatment. For a rapid screening of an oligosaccharide sample, superior results were obtained with a new preparation technique using 5-chloro-2-mercaptobenzothiazole (CMBT) as the first layer for 2,5-dihydroxybenzoic acid. For structural analysis by post-source decay, CMBT as the first layer for 3-aminoquinoline is a favoured preparation protocol, because extensive fragmentation is achieved. For acidic oligosaccharides, a special preparation protocol makes it possible to determine the number of sialic acids by inducing highly effective cationization. Matrix-assisted laser desorption/ionization mass spectrometry; matrices; oligosaccharides; post-source decay.  相似文献   

9.
The trend of miniaturization in bioanalytical chemistry is shifting from technical development to practical application. In matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), progress in miniaturizing sample spots has been driven by the needs to increase sensitivity and speed, to interface with other analytical microtechnologies, and to develop miniaturized instrumentation.We review recent developments in miniaturizing sample spots for MALDI-MS. We cover both target modification and microdispensing technologies, and we emphasize the benefits with respect to sensitivity, throughput and automation.We hope that this review will encourage further method development and application of miniaturized sample spots for MALDI-MS, so as to expand applications in analytical chemistry, protein science and molecular biology.  相似文献   

10.
Daniel JM  Ehala S  Friess SD  Zenobi R 《The Analyst》2004,129(7):574-578
A new technique is presented for the coupling of atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) mass spectrometry with liquid delivery systems. Mass measurements of polymers and peptides are demonstrated using a co-dissolved matrix, e.g. alpha-cyano-4-hydroxycinnamic acid (HCCA). Improvements in terms of sensitivity are achieved by optimizing the shape und control of the exit capillary and by using a laser (355 nm) at a 1 kHz repetition rate. Two calibration experiments promise a good applicability of the presented coupling method for quantitative measurements. The limit of detection achieved so far is 500 nM for peptides in methanol solution containing 25 mM HCCA.  相似文献   

11.
The potential of whole-cell matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) for the discovery of microorganisms that produce lantibiotics and/or bacteriocins in the mass range 3-5 kDa is demonstrated. Cells of the antibiotic-producing model strain Bacillus subtilis ATCC 6633 were grown on Landy agar plates, and prepared with a 9:1 mixture of 2,5-dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid (DHBs) as matrix using the bottom-layer method. Time-course analyses showed that cells grown for 1-2 days on agar plates gave the best results in terms of intensity of the bacteriocin/lantibiotic signals. Even after storage of matrix-crystal-embedded cells for several days high-resolution spectra (>10,000) could be obtained. To verify the applicability of this technique, different Bacillus wild-type and gene deletion mutant cells were analyzed. In most of the cases the known antibiotic phenotype of the producer could be corroborated by whole-cell MALDI-TOFMS, particularly for the lantibiotics subtilin and ericin. The preparation recipe for whole-cell analysis by MALDI-TOF was also highly sensitive for hydrophobic lipopeptide antibiotics like surfactin, mycosubtilin, fengycin, and bacillomycin in the lower mass range (1-1.5 kDa).  相似文献   

12.
Recent advances in the field of cancer biology have accelerated the discovery and development of novel biopharmaceuticals. At the forefront of these drug development efforts are high-throughput screening, compressed timelines, and limited sample quantities, all characteristic of the discovery space. To meet program targets, large numbers of protein variants must be produced, screened, and characterized, presenting a daunting analytical challenge. Additionally, the higher-order structure is paramount for protein function and must be monitored as a critical quality attribute. Matrix-assisted laser desorption/ionization mass spectrometry has been utilized as an ultra-fast, automatable, sample-sparing analytical tool for biomolecules. Our group has published applications integrating hydrogen-deuterium exchange mass spectrometry with matrix-assisted laser desorption/ionization mass spectrometry for the rapid conformational characterization of small proteins, the current work expands this application to monoclonal and bi-specific antibodies. This study demonstrates the ability of the methodology, matrix-assisted laser desorption/ionization hydrogen-deuterium exchange mass spectrometry, to detect conformational differences between bi-specific antibodies from different expression hosts. These conformational differences were validated by orthogonal techniques including circular dichroism, nuclear magnetic resonance, and size-exclusion chromatography hydrogen-deuterium exchange mass spectrometry. This work demonstrates the utility of applying the developed methodology as a rapid conformational screening tool to triage samples for further analytical characterization.  相似文献   

13.
14.
Various energy-absorbing substances, aminopyrazine (AP), 4,4'-azodianiline (ADA), and 1-chloro-4-hydroxyisoquinoline (CHIQ), together with their binary mixtures with existing acidic MALDI matrices were subjected to matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) and evaluated for the analysis of low molecular weight carbohydrates. The newly introduced systems, especially AP and the combination of 2,5-dihydroxybenzoic acid and aminopyrazine (DHB-AP), have solved almost all the existing problems of the generally low sensitivity of carbohydrate analysis and of the strong background noise produced from single acidic matrices. In fact, especially at a mixing ratio of 3:1 (DHB/AP), outstanding results could be achieved, enabling the detection of analytes down to a concentration of 4 fmol/microL with mass accuracy of 37 ppm. The performance of the system was finally proven by analysing dextrins and biological samples each of which showed excellent signal intensity and signal-to-noise ratio.  相似文献   

15.
16.
The application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for the analysis of low molecular weight (LMW) compounds, such as pharmacologically active constituents or metabolites, is usually hampered by employing conventional MALDI matrices owing to interferences caused by matrix molecules below 700 Da. As a consequence, interpretation of mass spectra remains challenging, although matrix suppression can be achieved under certain conditions. Unlike the conventional MALDI methods which usually suffer from background signals, matrix-free techniques have become more and more popular for the analysis of LMW compounds. In this review we describe recently introduced materials for laser desorption/ionization (LDI) as alternatives to conventionally applied MALDI matrices. In particular, we want to highlight a new method for LDI which is referred to as matrix-free material-enhanced LDI (MELDI). In matrix-free MELDI it could be clearly shown, that besides chemical functionalities, the material’s morphology plays a crucial role regarding energy-transfer capabilities. Therefore, it is of great interest to also investigate parameters such as particle size and porosity to study their impact on the LDI process. Especially nanomaterials such as diamond-like carbon, C60 fullerenes and nanoparticulate silica beads were found to be excellent energy-absorbing materials in matrix-free MELDI.  相似文献   

17.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has successfully been used to differentiate pseudo-enantiomeric (isotopically labelled) amino acids by using cyclodextrin as complexing host. By using different pseudo-enantiomeric mixtures (i.e. R(Dn) + S; and R + S(Dn)), it has been demonstrated that the preference of cyclodextrin for S-enantiomers is not due to the size differences caused by the hydrogen/deuterium substitution. It is postulated that this method can be extended to differentiate enantiomers (and determine enantiomeric excess) by using a pair of enantiomeric hosts, as demonstrated previously using other ionization techniques, but with much higher sensitivity.  相似文献   

18.
A novel method for acquisition and numerical analysis of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectral data is described. The digitized ion current transient from each consecutive laser shot is first acquired and stored independently. Subsequently, statistical correlation parameters between all stored transients are computed. We illustrate the uses of this event-by-event analysis method for studies of sample surface heterogeneity as well as for elucidating the mechanisms of ion formation in MALDI. Other potential applications of the method are also outlined.  相似文献   

19.
A major problem hampering the use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for quantitative measurements is the inhomogeneous distribution of analytes and matrices in solid sample preparations. The use of ionic liquids as matrices for the qualitative and quantitative analysis of low molecular weight compounds like amino acids, sugars and vitamins was investigated. The ionic liquid matrices are composed of equimolar combinations of classical MALDI matrices (sinapinic acid, alpha-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid) with organic bases. These matrix systems allow a homogenous sample preparation with a thin ionic liquid layer having negligible vapour pressure. This leads to a facilitated qualitative and quantitative measurement of the analytes compared with classical solid matrices.  相似文献   

20.
The application of nonpolar matrices for the analysis of low molecular weight nonpolar synthetic polymers using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is demonstrated. Anthracene, pyrene, and acenaphthene were utilized as nonpolar matrices for the analysis of polybutadiene, polyisoprene, and polystyrene samples of various average molecular weights ranging from about 700 to 5000. The standard MALDI-MS approach for the analysis of these types of polymers involves the use of conventional acidic matrices, such asall-trans-retinoic acid, with an additional cationization reagent. The nonpolar matrices used in this study are shown to be as equally effective as the conventional matrices. The uniform mixing of the nonpolar matrices and the nonpolar analytes enhances the MALDI-MS spectral reproducibility. Silver salts were found to be the best cationization reagents for all of the cases studied. Copper salts worked well for polystyrene, poorly for polyisoprene, and not at all for polybutadiene samples. These matrices should be useful for the characterization of hydrocarbon polymers and other analytes, such as modified polymers, which may potentially be sensitive to acidic matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号