首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider a class of optimal control problems involving a second-order, linear parabolic partial differential equation with Neumann boundary conditions. The time-delayed arguments are assumed to appear in the boundary conditions. A necessary and sufficient condition for optimality is derived, and an iterative method for solving this optimal control problem is proposed. The convergence property of this iterative method is also investigated.On the basis of a finite-element Galerkin's scheme, we convert the original distributed optimal control problem into a sequence of approximate problems involving only lumped-parameter systems. A computational algorithm is then developed for each of these approximate problems. For illustration, a one-dimensional example is solved.  相似文献   

2.
In this paper, we describe an initial-value method for linear and nonlinear singularly perturbed boundary value problems in the interval [p,q]. For linear problems, the required approximate solution is obtained by solving the reduced problem and one initial-value problems directly deduced from the given problem. For nonlinear problems the original second-order nonlinear problem is linearized by using quasilinearization method. Then this linear problem is solved as previous method. The present method has been implemented on several linear and non-linear examples which approximate the exact solution. We also present the approximate and exact solutions graphically.  相似文献   

3.
Consider the class of linear-quadratic (LQ) optimal control problems with continuous linear state constraints, that is, constraints imposed on every instant of the time horizon. This class of problems is known to be difficult to solve numerically. In this paper, a computational method based on a semi-infinite programming approach is given. The LQ optimal control problem is formulated as a positive-quadratic infinite programming problem. This can be done by considering the control as the decision variable, while taking the state as a function of the control. After parametrizing the decision variable, an approximate quadratic semi-infinite programming problem is obtained. It is shown that, as we refine the parametrization, the solution sequence of the approximate problems converges to the solution of the infinite programming problem (hence, to the solution of the original optimal control problem). Numerically, the semi-infinite programming problems obtained above can be solved efficiently using an algorithm based on a dual parametrization method.  相似文献   

4.
In this paper we use measure theory to solve a wide range of the nonlinear programming problems. First, we transform a nonlinear programming problem to a classical optimal control problem with no restriction on states and controls. The new problem is modified into one consisting of the minimization of a special linear functional over a set of Radon measures; then we obtain an optimal measure corresponding to functional problem which is then approximated by a finite combination of atomic measures and the problem converted approximately to a finite-dimensional linear programming. Then by the solution of the linear programming problem we obtain the approximate optimal control and then, by the solution of the latter problem we obtain an approximate solution for the original problem. Furthermore, we obtain the path from the initial point to the admissible solution.  相似文献   

5.
Existing algorithms for solving unconstrained optimization problems are generally only optimal in the short term. It is desirable to have algorithms which are long-term optimal. To achieve this, the problem of computing the minimum point of an unconstrained function is formulated as a sequence of optimal control problems. Some qualitative results are obtained from the optimal control analysis. These qualitative results are then used to construct a theoretical iterative method and a new continuous-time method for computing the minimum point of a nonlinear unconstrained function. New iterative algorithms which approximate the theoretical iterative method and the proposed continuous-time method are then established. For convergence analysis, it is useful to note that the numerical solution of an unconstrained optimization problem is none other than an inverse Lyapunov function problem. Convergence conditions for the proposed continuous-time method and iterative algorithms are established by using the Lyapunov function theorem.  相似文献   

6.
In this paper we shall study moving boundary problems, and we introduce an approach for solving a wide range of them by using calculus of variations and optimization. First, we transform the problem equivalently into an optimal control problem by defining an objective function and artificial control functions. By using measure theory, the new problem is modified into one consisting of the minimization of a linear functional over a set of Radon measures; then we obtain an optimal measure which is then approximated by a finite combination of atomic measures and the problem converted to an infinite-dimensional linear programming. We approximate the infinite linear programming to a finite-dimensional linear programming. Then by using the solution of the latter problem we obtain an approximate solution for moving boundary function on specific time. Furthermore, we show the path of moving boundary from initial state to final state.  相似文献   

7.
This paper deals with a class of optimal control problems in which the system is governed by a linear partial differential equation and the control is distributed and with constraints. The problem is posed in the framework of the theory of optimal control of systems. A numerical method is proposed to approximate the optimal control. In this method, the state space as well as the convex set of admissible controls are discretized. An abstract error estimate for the optimal control problem is obtained that depends on both the approximation of the state equation and the space of controls. This theoretical result is illustrated by some numerical examples from the literature.  相似文献   

8.
In this paper, optimal control problem (OCP) governed by the heat equation with thermal sources is considered. The aim is to find an optimal control which puts the system in a finite time T, into a stationary regime and to minimize a general objective function. To obtain an approximate solution of this problem, a partition of the time-control space is considered and the discrete form of the problem is converted to a quasi assignment problem. Then by using an evolutionary algorithm, an approximate optimal control function is obtained as a piecewise linear function. Numerical examples are given to show the proficiency of the presented algorithm.  相似文献   

9.
In this paper, we present a numerical method for solving linear and nonlinear second-order singularly perturbed boundary-value-problems. For linear problems, the method comes from the well-known WKB method. The required approximate solution is obtained by solving the reduced problem and one or two suitable initial-value problems, directly deduced from the given problem. For nonlinear problems, the quasilinearization method is applied. Numerical results are given showing the accuracy and feasibility of the proposed method.This work was supported in part by the Consiglio Nazionale delle Ricerche (Contract No. 86.02108.01 and Progetto Finalizzatto Sistemi Informatia e Calcolo Paralello, Sottoprogetto 1), and in part by the Ministero della Pubblica Istruzione, Rome, Italy.  相似文献   

10.
The least-squares method is used to obtain a stable algorithm for a system of linear inequalities as well as linear and nonlinear programming. For these problems the solution with minimal norm for a system of linear inequalities is found by solving the non-negative least-squares (NNLS) problem. Approximate and exact solutions of these problems are discussed. Attention is mainly paid to finding the initial solution to an LP problem. For this purpose an NNLS problem is formulated, enabling finding the initial solution to the primal or dual problem, which may turn out to be optimal. The presented methods are primarily suitable for ill-conditioned and degenerate problems, as well as for LP problems for which the initial solution is not known. The algorithms are illustrated using some test problems.  相似文献   

11.
Numerical methods for solving optimal control problems with equality constraints at the right end of the trajectory are discussed. Algorithms for optimal control search are proposed that are based on the multimethod technique for finding an approximate solution of prescribed accuracy that satisfies terminal conditions. High accuracy is achieved by applying a second-order method analogous to Newton’s method or Bellman’s quasilinearization method. In the solution of problems with direct control constraints, the variation of the control is computed using a finite-dimensional approximation of an auxiliary problem, which is solved by applying linear programming methods.  相似文献   

12.
This article presents a simulation-based methodology for finding optimal investment strategy for long-term financial planning. The problem becomes intractable due to its size or the properties of the utility function of the investors. One approach is to make simplifying assumptions regarding the states of the world and/or utility functions in order to obtain a solution. These simplifications lead to the true solution of an approximate problem. Our approach is to find a good approximate solution to the true problem. We approximate the optimal decision in each period with a low dimensional parameterization, thus reformulating the problem as a non-linear, simulation-based optimization in the parameter space. The dimension of the reformulated optimization problem becomes linear in the number of periods. The approach is extendable to other problems where similar solution characteristics are known.  相似文献   

13.
Robinson has proposed the bundle-based decomposition algorithm to solve a class of structured large-scale convex optimization problems. In this method, the original problem is transformed (by dualization) to an unconstrained nonsmooth concave optimization problem which is in turn solved by using a modified bundle method. In this paper, we give a posteriori error estimates on the approximate primal optimal solution and on the duality gap. We describe implementation and present computational experience with a special case of this class of problems, namely, block-angular linear programming problems. We observe that the method is efficient in obtaining the approximate optimal solution and compares favorably with MINOS and an advanced implementation of the Dantzig—Wolfe decomposition method.  相似文献   

14.
In this article, a numerical scheme on the basis of the measure theoretical approach for extracting approximate solutions of optimal control problems governed by nonlinear Fredholm integral equations is presented. The problem is converted to a linear programming in which its solution leads to construction of approximate solutions of the original problem. Finally, some numerical examples are given to demonstrate the efficiency of the approach.  相似文献   

15.
Many problems arising in practical applications lead to linear programming problems. Hence, they are fundamentally tractable. Recent interior-point methods can exploit problem structure to solve such problems very efficiently. Infeasible interior-point predictor–corrector methods using floating-point arithmetic sometimes compute an approximate solution with duality gap less than a given tolerance even when the problem may not have a solution. We present an efficient verification method for solving linear programming problems which computes a guaranteed enclosure of the optimal solution and which verifies the existence of the solution within the computed interval.  相似文献   

16.
This paper concerns an obstacle control problem for an elastic (homogeneous) and isotropic) pseudoplate. The state problem is modelled by a coercive variational inequality, where control variable enters the coefficients of the linear operator. Here, the role of control variable is played by the thickness of the pseudoplate which need not belong to the set of continuous functions. Since in general problems of control in coefficients have no optimal solution, a class of the extended optimal control is introduced. Taking into account the results of G-convergence theory, we prove the existence of an optimal solution of extended control problem. Moreover, approximate optimization problem is introduced, making use of the finite element method. The solvability of the approximate problem is proved on the basis of a general theorem. When the mesh size tends to zero, a subsequence of any sequence of approximate solutions converges uniformly to a solution of the continuous problem.  相似文献   

17.
In order to obtain numerical solutions for an abstract optimal control problem, one approximates the abstract operations in a computationally feasible manner. After having found an approximate optimal solution, the question is whether a sequence of these approximate optimal solutions converges to an optimal solution of the original problem. In this work, we are concerned with this type of convergence on the time-optimal control problem for a class of linear systems with distributed parameters and on the minimum-effort problem.  相似文献   

18.
Gomory and Hu (Ref. 1) formulated the optimal allocation of capacities to the links of a communication networks as a problem in linear programming. The application of this formulation to the solution of problems of realistic size does, however, require an excessive amount of computation. In the present paper, a slightly different formulation is given. The resulting optimality conditions readily lend themselves to the construction of problems with known optimal solutions, thereby providing suitable examples for the assessment of the efficiencies of approximate methods. An approximate method that has been found highly efficient in many cases is illustrated by an example.  相似文献   

19.
This paper describes a possibility for approximate solution of stochastic programming problems with complete recourse. We replace the static form of linear problem in Lp-space by a sequence of discretized problems in finite-dimensional spaces. We present conditions that guarantee the convergence of optimal values of discretized problems to the optimal value of the initial problem.  相似文献   

20.
The convergence of iterative based domain decomposition methods is linked with the absorbing boundary conditions defined on the interface between the sub-domains. For linear elasticity problems, the optimal absorbing boundary conditions are associated with non-local Dirichlet-to-Neumann maps. Most of the methods to approximate these non-local maps are based on a continuous analysis. In this paper, an original algebraic technique based on the computation of local Dirichlet-to-Neumann maps is investigated. Numerical experiments are presented for linear elasticity problems with extreme contrasts in the coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号