首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using a mixed ligand approach, a new stable porous metal‐organic framework [Zn3(BTC)2(Me)(H2O)2](MeOH)13 ( 1 ) (H3BTC = 1,3,5‐benzenetricarboxylic acid, Me = melamine) was constructed by using the triangular Zn3 secondary building unit, which reveals a 3D scu ‐type topology structure with a 1D channel parallel to the c axis. The stability and porosity of 1 was confirmed via the PXRD measurement and gas sorption studies, and its size could be downsized into nanoscale (nano‐ 1 ) with the help of PVP (polyvinyl pyrrolidone). Due to its high porosity and non‐toxicity nature, this MOF was used for the 5‐Fu storage/delivery, a moderate high 5‐Fu loading capacity and pH‐dependent drug release behavior could be observed. Furthermore, the in vitro cytotoxicity of the 5‐Fu/nano‐1 composite toward the 293 cells and human lung cancer A549 cells was evaluated by MTT assay.  相似文献   

2.
Encapsulating a drug molecule into a water‐reactive metal–organic framework (MOF) leads to amorphous drug confined within the nanoscale pores. Rapid release of drug occurs upon hydrolytic decomposition of MOF in dissolution media. Application to improve dissolution and solubility for the hydrophobic small drug molecules curcumin, sulindac, and triamterene is demonstrated. The drug@MOF composites exhibit significantly enhanced dissolution and achieves high supersaturation in simulated gastric and/or phosphate buffer saline media. This combination strategy where MOF inhibits crystallization of the amorphous phase and then releases drug upon MOF irreversible structural collapse represents a novel and generalizable approach for drug delivery of poorly soluble compounds while overcoming the traditional weakness of amorphous drug delivery: physical instability of the amorphous form.  相似文献   

3.
Liposomes have shown great promises for pharmaceutical applications, but still suffer from the poor storage stability, undesirable drug leakage, and uncontrolled drug release. Herein, liposomes‐camouflaged redox‐responsive nanogels platform (denoted as “R‐lipogels”) is prepared to integrate the desirable features of sensitive nanogels into liposomes to circumvent their intrinsic issues. The results indicate that drug‐loaded R‐lipogels with controlled size and high stability not only can achieve a very high doxorubicin (DOX)‐loading capacity (12.9%) and encapsulation efficiency (97.3%) by ammonium sulfate gradient method and very low premature leakage at physiological condition, but also can quickly release DOX in the reducing microenvironment of tumor cells, resulting in effective growth inhibition of tumor cells. In summary, the strategy given here provides a facile approach to develop liposomes–nanogels hybrid system with combined beneficial features of stealthy liposomes and responsive nanogels, which potentially resolves the dilemma between systemic stability and intracellular rapid drug release.  相似文献   

4.
Herein, we present a straightforward synthesis of pH‐responsive chitosan‐capped mesoporous silica nanoparticles (MSNs). These MCM‐41‐type MSNs could be used as nanocapsules to accommodate guest molecules. Subsequently, (3‐glycidyloxypropyl)trimethoxysilane was grafted onto the surface of the MSNs, which served as a bridge to link between MSNs and chitosan, which is ubiquitous in nature and commercially available. Owing to the pH‐responsive and biocompatible features of chitosan, the loading and release of an anti‐cancer drug, doxorubicin hydrochloride, were carried out in vitro, in which the composite chitosan‐capped MSNs (CS‐MSNs) showed excellent environmental response. As the pH value of the media decreased, the degree of drug release correspondingly increased. Moreover, thanks to the perfect biocompatibility of chitosan, the CS‐MSNs exhibited lower cytotoxicity than that of the naked MSNs in an MTT assay. In addition, the in vitro kill potency against MCF‐7 breast‐cancer cells was enhanced over time, as well as with increasing concentration of the drug‐loaded CS‐MSNs. These results indicate that CS‐MSNs are promising candidates for pH‐responsive drug delivery in cancer therapy.  相似文献   

5.
A GdIII‐based porous metal–organic framework (MOF), Gd‐pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4‐bis(5‐carboxy‐1H‐benzimidazole‐2‐yl)benzene)), resulting in a three‐dimensional interpenetrated structure with a one‐dimensional open channel (1.9×1.2 nm) filled with hydrogen‐bonded water assemblies. Gd‐pDBI exhibits high thermal stability, porosity, excellent water stability, along with organic‐solvent and mild acid and base stability with retention of crystallinity. Gd‐pDBI was transformed to the nanoscale regime (ca. 140 nm) by mechanical grinding to yield MG‐Gd‐pDBI with excellent water dispersibility (>90 min), maintaining its porosity and crystallinity. In vitro and in vivo studies on MG‐Gd‐pDBI revealed its low blood toxicity and highest drug loading (12 wt %) of anticancer drug doxorubicin in MOFs reported to date with pH‐responsive cancer‐cell‐specific drug release.  相似文献   

6.
To apply electrically nonconductive metal–organic frameworks (MOFs) in an electrocatalytic oxygen reduction reaction (ORR), we have developed a new method for fabricating various amounts of CuS nanoparticles (nano‐CuS) in/on a 3D Cu–MOF, [Cu3(BTC)2⋅(H2O)3] (BTC=1,3,5‐benzenetricarboxylate). As the amount of nano‐CuS increases in the composite, the electrical conductivity increases exponentially by up to circa 109‐fold, while porosity decreases, compared with that of the pristine Cu‐MOF. The composites, nano‐CuS(x wt %)@Cu‐BTC, exhibit significantly higher electrocatalytic ORR activities than Cu‐BTC or nano‐CuS in an alkaline solution. The onset potential, electron transfer number, and kinetic current density increase when the electrical conductivity of the material increases but decrease when the material has a poor porosity, which shows that the two factors should be finely tuned by the amount of nano‐CuS for ORR application. Of these materials, CuS(28 wt %)@Cu‐BTC exhibits the best activity, showing the onset potential of 0.91 V vs. RHE, quasi‐four‐electron transfer pathway, and a kinetic current density of 11.3 mA cm−2 at 0.55 V vs. RHE.  相似文献   

7.
To apply electrically nonconductive metal–organic frameworks (MOFs) in an electrocatalytic oxygen reduction reaction (ORR), we have developed a new method for fabricating various amounts of CuS nanoparticles (nano‐CuS) in/on a 3D Cu–MOF, [Cu3(BTC)2?(H2O)3] (BTC=1,3,5‐benzenetricarboxylate). As the amount of nano‐CuS increases in the composite, the electrical conductivity increases exponentially by up to circa 109‐fold, while porosity decreases, compared with that of the pristine Cu‐MOF. The composites, nano‐CuS(x wt %)@Cu‐BTC, exhibit significantly higher electrocatalytic ORR activities than Cu‐BTC or nano‐CuS in an alkaline solution. The onset potential, electron transfer number, and kinetic current density increase when the electrical conductivity of the material increases but decrease when the material has a poor porosity, which shows that the two factors should be finely tuned by the amount of nano‐CuS for ORR application. Of these materials, CuS(28 wt %)@Cu‐BTC exhibits the best activity, showing the onset potential of 0.91 V vs. RHE, quasi‐four‐electron transfer pathway, and a kinetic current density of 11.3 mA cm?2 at 0.55 V vs. RHE.  相似文献   

8.
We report an in situ polymerization strategy to incorporate a thermo‐responsive polymer, poly(N‐isopropylacrylamide) (PNIPAM), with controlled loadings into the cavity of a mesoporous metal–organic framework (MOF), MIL‐101(Cr). The resulting MOF/polymer composites exhibit an unprecedented temperature‐triggered water capture and release behavior originating from the thermo‐responsive phase transition of the PNIPAM component. This result sheds light on the development of stimuli‐responsive porous adsorbent materials for water capture and heat transfer applications under relatively mild operating conditions.  相似文献   

9.
Multi‐component MOFs contain multiple sets of unique and hierarchical pores, with different functions for different applications, distributed in their inter‐linked domains. Herein, we report the construction of a class of precisely aligned flexible‐on‐rigid hybrid‐phase MOFs with a unique rods‐on‐octahedron morphology. We demonstrated that hybrid‐phase MOFs can be constructed based on two prerequisites: the partially matched topology at the interface of the two frameworks, and the structural flexibility of MOFs with acs topology, which can compensate for the differences in lattice parameters. Furthermore, we achieved domain selective loading of multiple guest molecules into the hybrid‐phase MOF, as observed by scanning transmission electron microscopy–energy‐dispersive X‐ray spectrometry elemental mapping. Most importantly, we successfully applied the constructed hybrid‐phase MOF to develop a dual‐drug delivery system with controllable loading ratio and release kinetics.  相似文献   

10.
Epitaxial growth of MOF‐on‐MOF composite is an evolving research topic in the quest for multifunctional materials. In previously reported methods, the core–shell MOFs were synthesized via a stepwise strategy that involved growing the shell‐MOFs on top of the preformed core‐MOFs with matched lattice parameters. However, the inconvenient stepwise synthesis and the strict lattice‐matching requirement have limited the preparation of core–shell MOFs. Herein, we demonstrate that hybrid core–shell MOFs with mismatching lattices can be synthesized under the guidance of nucleation kinetic analysis. A series of MOF composites with mesoporous core and microporous shell were constructed and characterized by optical microscopy, powder X‐ray diffraction, gas sorption measurement, and scanning electron microscopy. Isoreticular expansion of microporous shells and orthogonal modification of the core was realized to produce multifunctional MOF composites, which acted as size selective catalysts for olefin epoxidation with high activity and selectivity.  相似文献   

11.
Ultrathin metal–organic framework (MOF) nanosheets (NSs) offer potential for many applications, but the synthetic strategies are largely limited to top‐down, low‐yield exfoliation methods. Herein, Ni–M–MOF (M=Fe, Al, Co, Mn, Zn, and Cd) NSs are reported with a thickness of only several atomic layers, prepared by a large‐scale, bottom‐up solvothermal method. The solvent mixture of N,N‐dimethylacetamide and water plays key role in controlling the formation of these two‐dimensional MOF NSs. The MOF NSs can be directly used as efficient electrocatalysts for the oxygen evolution reaction, in which the Ni–Fe–MOF NSs deliver a current density of 10 mA cm?2 at a low overpotential of 221 mV with a small Tafel slope of 56.0 mV dec?1, and exhibit excellent stability for at least 20 h without obvious activity decay. Density functional theory calculations on the energy barriers for OER occurring at different metal sites confirm that Fe is the active site for OER at Ni–Fe–MOF NSs.  相似文献   

12.
Ultrathin metal–organic framework (MOF) nanosheets (NSs) offer potential for many applications, but the synthetic strategies are largely limited to top‐down, low‐yield exfoliation methods. Herein, Ni–M–MOF (M=Fe, Al, Co, Mn, Zn, and Cd) NSs are reported with a thickness of only several atomic layers, prepared by a large‐scale, bottom‐up solvothermal method. The solvent mixture of N,N‐dimethylacetamide and water plays key role in controlling the formation of these two‐dimensional MOF NSs. The MOF NSs can be directly used as efficient electrocatalysts for the oxygen evolution reaction, in which the Ni–Fe–MOF NSs deliver a current density of 10 mA cm?2 at a low overpotential of 221 mV with a small Tafel slope of 56.0 mV dec?1, and exhibit excellent stability for at least 20 h without obvious activity decay. Density functional theory calculations on the energy barriers for OER occurring at different metal sites confirm that Fe is the active site for OER at Ni–Fe–MOF NSs.  相似文献   

13.
Hybridization of metal–organic frameworks (MOFs) and polymers into composites yields materials that display the exceptional properties of MOFs with the robustness of polymers. However, the realization of MOF–polymer composites requires efficient dispersion and interactions of MOF particles with polymer matrices, which remains a significant challenge. Herein, we report a simple, scalable, bench‐top approach to covalently tethered nylon–MOF polymer composite materials through an interfacial polymerization technique. The copolymerization of a modified UiO‐66‐NH2 MOF with a growing polyamide fiber (PA‐66) during an interfacial polymerization gave hybrid materials with up to around 29 weight percent MOF. The covalent hybrid material demonstrated nearly an order of magnitude higher catalytic activity for the breakdown of a chemical warfare simulant (dimethyl‐4‐nitrophenyl phosphate, DMNP) compared to MOFs that are non‐covalently, physically entrapped in nylon, thus highlighting the importance of MOF–polymer hybridization.  相似文献   

14.
A dinuclear gold(I) pyrrolidinedithiocarbamato complex ( 1 ) with a bidentate carbene ligand has been constructed and shows potent in vitro cytotoxic activities towards cisplatin‐resistant ovarian cancer cells A2780cis. Its rigid scaffold enables a zinc(II)‐based metal–organic framework (Zn‐MOF) to be used as a carrier in facilitating the uptake and release of 1 in solutions. Instead of using a conventional dialysis approach for the drug‐release testing, in this study, a set of transwell assay‐based experiments have been designed and employed to examine the cytotoxic and antimigratory activities of 1 @Zn‐MOF towards A2780cis.  相似文献   

15.
Synthetic polyesters are usually composed of monohydroxycarboxylic acids to avoid the problem of regioselectivity during ring‐opening polymerization. In contrast, the linear polyester BICpoly contains four secondary OH groups and is nevertheless esterified regioselectively at only one of these positions. Neither the synthesis of the tricyclic monomers nor the ring‐opening polymerization requires protecting groups, making BICpoly an attractive novel and biocompatible polymer. BICpoly nanoparticles can be loaded with low‐molecular weight drugs or coated onto surfaces as thin films. The release of loaded compounds makes BICpoly an attractive depot for drug release, as shown herein by loading BICpoly with dyes or the cytostatic drug doxorubicin. BICpoly is distinguishable from other polymers by its characteristic pH‐dependent degradation.  相似文献   

16.
Metal–organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well‐defined hollow Zn/Co‐based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn‐MOF (ZIF‐8) on preformed Co‐MOF (ZIF‐67) nanocrystals that involve in situ self‐sacrifice/excavation of the Co‐MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co‐ZIF shells to generate yolk–shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co‐ZIF with dominance of the Zn‐MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.  相似文献   

17.
A site‐selective controlled delivery system for controlled drug release is fabricated through the in situ assembly of stimuli‐responsive ordered SBA‐15 and magnetic particles. This approach is based on the formation of ordered mesoporous silica with magnetic particles formed from Fe(CO)5 via the surfactant‐template sol‐gel method and control of transport through polymerization of N‐isopropyl acrylamide inside the pores. Hydrophobic Fe(CO)5 acts as a swelling agent as well as being the source of the magnetic particles. The obtained system demonstrates a high pore diameter (7.1 nm) and pore volume (0.41 cm3 g?1), which improves drug storage for relatively large molecules. Controlled drug release through the porous network is demonstrated by measuring the uptake and release of ibuprofen (IBU). The delivery system displays a high IBU storage capacity of 71.5 wt %, which is almost twice as large as the highest value based on SBA‐15 ever reported. In vitro testing of IBU loading and release exhibits a pronounced transition at around 32 °C, indicating a typical thermosensitive controlled release.  相似文献   

18.
A liposome‐based co‐delivery system composed of a fusogenic liposome encapsulating ATP‐responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP‐mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein–DNA complex core containing an ATP‐responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell‐penetrating peptide‐modified fusogenic liposomal membrane was coated on the core, which had an acid‐triggered fusogenic potential with the ATP‐loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH‐sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo.  相似文献   

19.
We present here a novel camptothecin (CPT) prodrug based on polyethylene glycol monomethyl ether‐block‐poly(2‐methacryl ester hydroxyethyl disulfide‐graft‐CPT) (MPEG‐SS‐PCPT). It formed biocompatible nanoparticles (NPs) with diameters of approximately 122 nm with a CPT loading content as high as approximately 25 wt % in aqueous solution. In in vitro release studies, these MPEG‐SS‐PCPT NPs could undergo triggered disassembly and much faster release of CPT under glutathione (GSH) stimulus than in the absence of GSH. The CPT prodrug had high antitumor activity, and another anticancer drug, doxorubicin hydrochloride (DOX ? HCl), could also be introduced into the prodrug with a high loading amount. The DOX ? HCl‐loaded CPT prodrug could deliver two anticancer drugs at the same time to produce a collaborative cytotoxicity toward cancer cells, which suggested that this GSH‐responsive NP system might become a promising carrier to improve drug‐delivery efficacy.  相似文献   

20.
The epoxidation of ethylene with N2O over the metal‐organic framework Fe–BTC (BTC=1,3,5‐benzentricarboxylate) is investigated by means of density functional calculations. Two reaction paths for the production of ethylene oxide or acetaldehyde are systematically considered in order to assess the efficiency of Fe–BTC for the selective formation of ethylene oxide. The reaction starts with the decomposition of N2O to form an active surface oxygen atom on the Fe site of Fe–BTC, which subsequently reacts with an ethylene molecule to form an ethyleneoxy intermediate. This intermediate can then be selectively transformed either by 1,2‐hydride shift into the undesired product acetaldehyde or into the desired product ethylene oxide by way of ring closure of the intermediate. The production of ethylene oxide requires an activation energy of 5.1 kcal mol?1, which is only about one‐third of the activation energy of acetaldehyde formation (14.3 kcal mol?1). The predicted reaction rate constants for the formation of ethylene oxide in the relevant temperature range are approximately 2–4 orders of magnitude higher than those for acetaldehyde. Altogether, the results suggest that Fe–BTC is a good candidate catalyst for the epoxidation of ethylene by molecular N2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号