首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution nuclear magnetic resonance (NMR) is one of the most powerful tools for analyzing molecular structures and dynamics. Magnetic field homogeneity is required for conventional high-resolution spectra. However, there are many chemical and/or biological circumstances where the spatial homogeneities of the magnetic fields are degraded. Intense solvent signal is another obstacle for obtaining high-resolution spectra, especially in in vivo and in situ NMR spectroscopy. In this paper, a new pulse sequence based on intermolecular multiple quantum coherence (iMQC) was reported. This sequence can effectively remove the effect of magnetic field inhomogeneity and suppress the solvent signal. It can recover the spectral information such as chemical shifts, coupling constants, multiplet patterns, and relative peak areas in inhomogeneous fields. Theoretical analyses and experimental verifications are presented to demonstrate the feasibility of this method.  相似文献   

2.
《中国化学会会志》2018,65(6):674-680
The feasibility of ultrafast high‐resolution intermolecular multiple‐quantum coherence (UF‐iMQC) spectroscopy for the direct analysis of molecular‐mobility‐restricted samples that are not suitable for magic‐angle spinning, such as a jelly, hand soap, and marrow, is presented. Most components could be directly detected in their original state within 1 min without the need for tedious sample preparation processes. When we use conventional liquid nuclear magnetic resonance (NMR) method to study these systems, the spectral information could not be retrieved owing to the intrinsic inhomogeneous magnetic fields caused by sample inhomogeneity. In addition, the possibility for UF‐iMQC‐based quantifications is shown. The examples presented in this paper demonstrate the potential of UF iMQC NMR for food safety inspection, for quality testing of daily‐life supplies, or in assisting medical diagnosis.  相似文献   

3.
Overhauser–DNP‐enhanced homonuclear 2D 19F correlation spectroscopy with diagonal suppression is presented for small molecules in the solution state at moderate fields. Multi‐frequency, multi‐radical studies demonstrate that these relatively low‐field experiments may be operated with sensitivity rivalling that of standard 200–1000 MHz NMR spectroscopy. Structural information is accessible without a sensitivity penalty, and diagonal suppressed 2D NMR correlations emerge despite the general lack of multiplet resolution in the 1D ODNP spectra. This powerful general approach avoids the rather stiff excitation, detection, and other special requirements of high‐field 19F NMR spectroscopy.  相似文献   

4.
Nuclear magnetic resonance (NMR) studies have benefited tremendously from the steady increase in the strength of magnetic fields. Spectacular improvements in both sensitivity and resolution have enabled the investigation of molecular systems of rising complexity. At very high fields, this progress may be jeopardized by line broadening, which is due to chemical exchange or relaxation by chemical shift anisotropy. In this work, we introduce a two‐field NMR spectrometer designed for both excitation and observation of nuclear spins in two distinct magnetic fields in a single experiment. NMR spectra of several small molecules as well as a protein were obtained, with two dimensions acquired at vastly different magnetic fields. Resonances of exchanging groups that are broadened beyond recognition at high field can be sharpened to narrow peaks in the low‐field dimension. Two‐field NMR spectroscopy enables the measurement of chemical shifts at optimal fields and the study of molecular systems that suffer from internal dynamics, and opens new avenues for NMR spectroscopy at very high magnetic fields.  相似文献   

5.
In homogeneous fields, the advantages of forward linear prediction (LP) for processing 2D NMR data sets have long been recognized. In this paper, the forward LP method was employed to obtain high-resolution NMR spectra in inhomogeneous fields. Intermolecular multiple-quantum coherence (iMQC) signals are caused by intermolecular dipolar interactions and can be used to obtain 1D high-resolution NMR spectra from the 2D iMQC spectra acquired in inhomogeneous fields. However, when the 2D spectra are acquired with insufficient increments to save experimental time, wiggles around strong peaks and bad resolution will occur. Extending the data set by forward LP in the indirect dimension is a good way to improve spectral resolution. Compared to normal discrete Fourier transform, the forward LP method can shorten experimental time by a factor of four or more at the same level of sensitivity and resolution.  相似文献   

6.
Chemical exchange saturation transfer (CEST) NMR spectroscopy is a powerful tool for studies of slow timescale protein dynamics. Typical experiments are based on recording a large number of 2D data sets and quantifying peak intensities in each of the resulting planes. A weakness of the method is that peaks must be resolved in 2D spectra, limiting applications to relatively small proteins. Resolution is significantly improved in 3D spectra but recording uniformly sampled data is time‐prohibitive. Here we describe non‐uniformly sampled HNCO‐based pseudo‐4D CEST that provides excellent resolution in reasonable measurement times. Data analysis is done through fitting in the time domain, without the need of reconstructing the frequency dimensions, exploiting previously measured accurate peak positions in reference spectra. The methodology is demonstrated on several protein systems, including a nascent form of superoxide dismutase that is implicated in neurodegenerative disease.  相似文献   

7.
Chemical exchange saturation transfer (CEST) NMR spectroscopy is a powerful tool for studies of slow timescale protein dynamics. Typical experiments are based on recording a large number of 2D data sets and quantifying peak intensities in each of the resulting planes. A weakness of the method is that peaks must be resolved in 2D spectra, limiting applications to relatively small proteins. Resolution is significantly improved in 3D spectra but recording uniformly sampled data is time‐prohibitive. Here we describe non‐uniformly sampled HNCO‐based pseudo‐4D CEST that provides excellent resolution in reasonable measurement times. Data analysis is done through fitting in the time domain, without the need of reconstructing the frequency dimensions, exploiting previously measured accurate peak positions in reference spectra. The methodology is demonstrated on several protein systems, including a nascent form of superoxide dismutase that is implicated in neurodegenerative disease.  相似文献   

8.
We demonstrate that heterogeneous/biphasic chemical reactions can be monitored with high spectroscopic resolution using zero‐field nuclear magnetic resonance spectroscopy. This is possible because magnetic susceptibility broadening is negligible at ultralow magnetic fields. We show the two‐step hydrogenation of dimethyl acetylenedicarboxylate with para‐enriched hydrogen gas in conventional glass NMR tubes, as well as in a titanium tube. The low frequency zero‐field NMR signals ensure that there is no significant signal attenuation arising from shielding by the electrically conductive sample container. This method paves the way for in situ monitoring of reactions in complex heterogeneous multiphase systems and in reactors made of conductive materials while maintaining resolution and chemical specificity.  相似文献   

9.
High-resolution NMR spectroscopy is a powerful tool for analyzing molecular structures and compositions. Line-widths of conventional liquid NMR signals are directly proportional to the overall magnetic field inhomogeneity the sample experiences. In many circumstances, spatial and temporal homogeneity of the magnetic field is degraded. In this paper, a modified pulse sequence based on intermolecular double-quantum coherences (iDQCs) was proposed to obtain 1D high-resolution NMR spectra under inhomogeneous fields using 2D acquisition. Analytical expressions were derived from the intermolecular multiple-quantum coherence (iMQC) treatments. Both experimental and simulated spectra provide high-resolution 1D projection spectra similar to conventional 1D high-resolution spectra. Moreover, the apparent J coupling constants are threefold magnified, which allows a more accurate measurement of small J coupling constants.  相似文献   

10.
(+)‐N‐formylnorglaucine ( 1 ), an aporphine alkaloid containing a formyl group linked to the heterocyclic nitrogen, was isolated from the leaves of Unonopsis stipitata, an Amazon medicinal plant. The chemical structure was characterized based on 1D‐ and 2D‐NMR spectroscopy and HR‐ESI‐MS. NMR spectra revealed that 1 is composed of two rotamers ( 1a and 1b ) in a ratio of approximately 2:1. In addition, the fragmentation behavior of 1 displayed an unusual fragmentation pattern compared to regular aporphine alkaloids. Thus, this compound is reported for the first time as a natural product in this study.  相似文献   

11.
Diffusion‐ordered spectroscopy (DOSY) is an effective method for the analysis of intact mixtures, but the quality of results is critically limited by resolution in the NMR dimension. A new experiment integrating diffusion weighting into the PSYCHE method for pure shift NMR spectroscopy allows DOSY spectra to be measured with ultrahigh NMR resolution at improved sensitivity.  相似文献   

12.
The usefulness of computer‐assisted aliasing to secure maximal resolution of signal clusters in 1H‐ and 13C‐NMR spectra (which is essential for structure determination by HMBC 2D NMR spectroscopy) in minimal acquisition time is exemplified by the complete characterization of the two complementary p‐octiphenyls 1 and 2 with complex substitution patterns. The need for digital resolution near 1 Hz/pt to dissect the extensive signal clusters in the NMR spectra of these refined oligomers excluded structure determination under routine conditions. High resolution was secured by exploiting the low signal density in the 13C dimension of HMBC spectra by using computer‐assisted aliasing to maximize signal density. Based on the observed shifts in DEPT and 1H‐decoupled 13C‐NMR spectra of 1 and 2 , computer‐assisted aliasing allowed to reduce the number of required time increments by a factor of 20 to 30 compared to full‐width spectra with identical resolution. Without signal‐to‐noise constraints, this computer‐assisted aliasing reduced the acquisition time for high‐resolution NMR spectra needed for complete characterization of refined oligomers 1 and 2 by the same factor (e.g., from over a day to about an hour). With resolved signal clusters in fully aliased HSQC and HMBC spectra, unproblematic structure determination of 1 and 2 is demonstrated by unambiguous assignment of all C‐ and H‐atoms. These findings demonstrate that computer‐assisted aliasing of the underexploited 13C dimension makes extensive molecular complexity accessible by conventional multidimensional heteronuclear NMR experiments without extraordinary efforts.  相似文献   

13.
A simple NMR experiment capable of providing well resolved spectra under conditions where either radiation damping or static magnetic field inhomogeneity would broaden otherwise high‐resolution NMR spectra is introduced. The approach involves using a strong pulsed magnetic field gradient and a selective radio‐frequency pulse to encode a predetermined noise pattern into the spatial distribution of magnetization. Following readout in a much smaller field gradient, the noise sequence may be deconvolved from the acquired data and a high‐resolution spectrum is obtained, eliminating the effects of either radiation damping or the static field inhomogeneity. In the presence of field inhomogeneity a field map is also obtained from the same single transient. A quasi‐two‐dimensional version of the experiment eliminates the need for deconvolution and produces improved results with simplified processing, but without requiring a full two‐dimensional experiment. Example spectra are shown for both radiation damping and one‐dimensional field inhomogeneity with improvement in linewidths of more than a factor of 40.  相似文献   

14.
A simple design for performing rapid temperature jumps within a high‐resolution nuclear magnetic resonance (NMR) setting is presented and exemplified. The design is based on mounting, around a conventional NMR glass tube, an inductive radiofrequency (RF) irradiation coil that is suitably tuned by a resonant circuit and is driven by one of the NMR's console high‐power RF amplifiers. The electric fields generated by this coil's thin metal strips can lead to a fast and efficient heating of the sample, amounting to temperature jumps of ≈ 20 °C in well within a second—particularly in the presence of lossy dielectric media like those provided by physiological buffers. Moreover, when wound around a 4‐mm NMR tube, the resulting device fits a conventional 5‐mm inverse probe and is wholly compatible with the field homogeneities and sensitivities expected for high‐resolution biomolecular NMR conditions. The performance characteristics of this new system were tested using saline solutions, as well as on a lyotropic liquid crystal capable of undergoing nematic → isotropic transitions in the neighborhood of ambient temperature. These settings were then incorporated into the performance of a new kind of single‐scan 2D NMR spectroscopy acquisition, correlating the anisotropic and isotropic patterns elicited by solutes dissolved in such liquid‐crystalline systems, before and after a sudden temperature jump occurring during an intervening mixing period. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A detailed analysis of the proton high‐field (600 MHz) NMR spectra of tomato juice and pulp is reported for the first time. A combination of J‐resolved, COSY, TOCSY, DOSY, 1H–13C HSQC and 1H–13C HMBC 2D sequences was used to assign each spin system and to separate the components of the complex patterns in the 1D overlapped proton spectra. To obtain resolved proton spectra of tomato pulps the high‐resolution magic angle spinning technique was used; a comparison with the liquid‐state NMR spectra of the corresponding juices was accomplished. On the basis of the assignments made, the chemical composition of tomato juices from two cultivars (Red Setter and Ciliegino) was determined. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Modern applications of 2D NMR spectroscopy to diagnostic screening, metabolomics, quality control, and other high‐throughput applications are often limited by the time‐consuming sampling requirements along the indirect time domain t 1. 2D total correlation spectroscopy (TOCSY) provides unique spin connectivity information for the analysis of a large number of compounds in complex mixtures, but standard methods typically require >100 t 1 increments for an accurate spectral reconstruction, rendering these experiments ineffective for high‐throughput applications. For a complex metabolite mixture it is demonstrated that absolute minimal sampling (AMS), based on direct fitting of resonance frequencies and amplitudes in the time domain, yields an accurate spectral reconstruction of TOCSY spectra using as few as 16 t 1 points. This permits the rapid collection of homonuclear 2D NMR experiments at high resolution with measurement times that previously were only the realm of 1D experiments.  相似文献   

17.
Unambiguous spectral assignments in 1H solution‐state NMR are central, for accurate structural elucidation of complex molecules, which is often hampered by signal overlap, primarily because of scalar coupling multiplets, even at typical high magnetic fields. The recent advances in homodecoupling methods have shown powerful means of achieving high resolution pure‐shift 1H spectra in 1D and also in 2D J‐correlated experiments, by effectively collapsing the multiplet structures. The present work extends these decoupling strategies to through‐space correlation experiments as well and describes two new pure‐shift ROESY pulse schemes with homodecoupling during acquisition, viz., homodecoupled broadband (HOBB)‐ROESY and homodecoupled band‐selective (HOBS)‐ROESY. Furthermore, the ROESY blocks suppress the undesired interferences of TOCSY cross peaks and other offsets. Despite the reduced signal sensitivity and prolonged experimental times, the HOBB‐ROESY is particularly useful for molecules that exhibit an extensive scalar coupling network spread over the entire 1H chemical shift range, such as natural/synthetic organic molecules. On the other hand, the HOBS‐ROESY is useful for molecules that exhibit well‐separated chemical shift regions such as peptides (NH, Hα and side‐chain protons). The HOBS‐ROESY sensitivities are comparable with the conventional ROESY, thereby saves the experimental time significantly. The power of these pure‐shift ROESY sequences is demonstrated for two different organic molecules, wherein complex conventional ROE cross peaks are greatly simplified with high resolution and sensitivity. The enhanced resolution allows deriving possibly more numbers of ROEs with better accuracy, thereby facilitating superior means of structural characterization of medium‐size molecules. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The complete assignment of 1H and 13C chemical shifts of natural abundance prenol‐10 is reported for the first time. It was achieved using 3D NMR experiments, which were based on random sampling of the evolution time space followed by multidimensional Fourier transform. This approach makes it possible to acquire 3D NMR spectra in a reasonable time and preserves high resolution in indirectly detected dimensions. It is shown that the interpretation of 3D COSY–HMBC and 3D TOCSY–HSQC spectra is crucial in the structural analysis of prenol‐10. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Determining the structure of reactive intermediates is the key to understanding reaction mechanisms. To access these structures, a method combining structural sensitivity and high time resolution is required. Here ultrafast polarization‐dependent two‐dimensional infrared (P2D‐IR) spectroscopy is shown to be an excellent complement to commonly used methods such as one‐dimensional IR and multidimensional NMR spectroscopy for investigating intermediates. P2D‐IR spectroscopy allows structure determination by measuring the angles between vibrational transition dipole moments. The high time resolution makes P2D‐IR spectroscopy an attractive method for structure determination in the presence of fast exchange and for short‐lived intermediates. The ubiquity of vibrations in molecules ensures broad applicability of the method, particularly in cases in which NMR spectroscopy is challenging due to a low density of active nuclei. Here we illustrate the strengths of P2D‐IR by determining the conformation of a Diels–Alder dienophile that carries the Evans auxiliary and its conformational change induced by the complexation with the Lewis acid SnCl4, which is a catalyst for stereoselective Diels–Alder reactions. We show that P2D‐IR in combination with DFT computations can discriminate between the various conformers of the free dienophile N‐crotonyloxazolidinone that have been debated before, proving antiperiplanar orientation of the carbonyl groups and s‐cis conformation of the crotonyl moiety. P2D‐IR unequivocally identifies the coordination and conformation in the catalyst–substrate complex with SnCl4, even in the presence of exchange that is fast on the NMR time scale. It resolves a chelate with the carbonyl orientation flipped to synperiplanar and s‐cis crotonyl configuration as the main species. This work sets the stage for future studies of other catalyst–substrate complexes and intermediates using a combination of P2D‐IR spectroscopy and DFT computations.  相似文献   

20.
NMR spectroscopy was applied for quantitative and qualitative characterization of the chemical composition and microstructure of a series of poly(3‐hydroxybutyrate‐co‐3‐hydoxyvalerate) copolymers, P(3HB‐co‐3HV), synthesized by mixed microbial cultures at several different feeding strategies. The monomer sequence distribution of the bacterially synthesized P(3HB‐co‐3HV) was defined by analysis of their high‐resolution 1D 13C NMR and 2D 1H/13C HSQC and 1H/13C HMBC NMR spectra. The results were verified by employment of statistical methods and suggest a block copolymer microstructure of the P(3HB‐co‐3HV) copolymers studied. Definitive distinction between block copolymers or a mixture of random copolymers could not be achieved. NMR spectral analysis indicates that the chemical composition and microstructure of the copolymers can be tuned by choosing a correct feeding strategy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号