首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quick on the uptake : Palladium nanoparticles were fabricated simply by immersing {[Zn3(ntb)2(EtOH)2]?4 EtOH}n ( 1 ) in an MeCN solution of Pd(NO3)2 at room temperature, without any extra reducing agent. 3 wt % PdNPs@[ 1 ]0.54+(NO3?)0.54 significantly increase H2 uptake capacities, both at 77 K and 1 bar and at 298 K and high pressures (see picture, red curve) compared to [Zn3(ntb)2]n (black). ntb=4,4′,4′′‐nitrilotrisbenzoate.

  相似文献   


2.
We present a new metal–organic framework (MOF) built from lanthanum and pyrazine‐2,5‐dicarboxylate (pyzdc) ions. This MOF, [La(pyzdc)1.5(H2O)2] ? 2 H2O, is microporous, with 1D channels that easily accommodate water molecules. Its framework is highly robust to dehydration/hydration cycles. Unusually for a MOF, it also features a high hydrothermal stability. This makes it an ideal candidate for air drying as well as for separating water/alcohol mixtures. The ability of the activated MOF to adsorb water selectively was evaluated by means of thermogravimetric analysis, powder and single‐crystal X‐ray diffraction and adsorption studies, indicating a maximum uptake of 1.2 mmol g?1 MOF. These results are in agreement with the microporous structure, which permits only water molecules to enter the channels (alcohols, including methanol, are simply too large). Transient breakthrough simulations using water/methanol mixtures confirm that such mixtures can be separated cleanly using this new MOF.  相似文献   

3.
Postsynthetic modification is presented as a means to tune the hydrogen adsorption properties of a series of metal–organic frameworks (MOFs). IRMOF‐3 (isoreticular metal–organic framework), UMCM‐1‐NH2 (University of Michigan crystalline material), and DMOF‐1‐NH2 (DABCO metal–organic framework) have been covalently modified with a series of anhydrides or isocyanates and the hydrogen sorption properties have been studied. Both the storage capacities and isosteric heats of adsorption clearly show that covalent postsynthetic modification can significantly enhance the sorption affinity of MOFs with hydrogen and in some cases increase both gravimetric and volumetric uptake of the gas as much as 40 %. The significance of the present study is illustrated by: 1) the nature of the substituents introduced by postsynthetic modification result in different effects on the binding of hydrogen; 2) the covalent postsynthetic modification approach allows for systematic modulation of hydrogen sorption properties; and 3) the ease of postsynthetic modification of MOFs allows a direct evaluation of the interplay between MOF structure, hydrogen uptake, and heat of adsorption. The findings presented herein show that postsynthetic modification is a powerful method to manipulate and better understand the gas sorption properties of MOFs.  相似文献   

4.
A metal–organic framework (MOF)–protein conjugate, NH2‐MIL‐125(Ti)‐hemoglobin [MIL‐125(Ti)‐Hb], was synthesized by a covalent postmodification strategy. The crystalline structure was maintained after chemical and protein modification. The content of grafted Hb was tuned by the stoichiometric ratio and reached 50 wt % if the mass ratio of MIL‐125(Ti)/Hb was 1:1.25 in the feed. The oxygen‐transporting capacity of grafted Hb was kept, and the P50 (the half O2 pressure saturated with O2) and Hill coefficients of the MIL‐125(Ti)‐Hb conjugate were found to be 22.9 mm Hg and 2.35, respectively, which are close to the respective values of free Hb. All the results indicate that the MIL‐125(Ti)‐Hb conjugate could be potentially used as an oxygen carrier.  相似文献   

5.
6.
Four isostructural metal–organic frameworks (MOFs) with various functionalized pore surfaces were synthesized from a series of diisophthalate ligands. These MOFs exhibit a new network topology of {4.64.8}2{42.64}{64.82}2{66}. Hydrogen uptake as high as 2.67 wt % at 77 K/1 bar and CO2 uptake of 15.4 wt % at 297 K/1 bar have been observed for PCN‐308, which contains ? CF3 groups. The isostructural series of MOFs also showed reasonable adsorption selectivity of CO2 over CH4 and N2.  相似文献   

7.
8.
The Zr‐containing metal–organic frameworks (MOFs) formed by terephthalate (UiO‐66) and 2‐aminoterephthalate ligands [UiO‐66(NH2)] are two notably water‐resistant MOFs that exhibit photocatalytic activity for hydrogen generation in methanol or water/methanol upon irradiation at wavelength longer than 300 nm. The apparent quantum yield for H2 generation using monochromatic light at 370 nm in water/methanol 3:1 was of 3.5 % for UiO‐66(NH2). Laser‐flash photolysis has allowed detecting for UiO‐66 and UiO‐66(NH2) the photochemical generation of a long lived charge separated state whose decay is not complete 300 μs after the laser flash. Our finding and particularly the influence of the amino group producing a bathochromic shift in the optical spectrum without altering the photochemistry shows promises for the development of more efficient MOFs for water splitting.  相似文献   

9.
The one‐step synthesis and characterization of a new and robust titanium‐based metal–organic framework, ACM‐1 , is reported. In this structure, which is based on infinite Ti?O chains and 4,4′,4′′,4′′′‐(pyrene‐1,3,6,8‐tetrayl) tetrabenzoic acid as a photosensitizer ligand, the combination of highly mobile photogenerated electrons and a strong hole localization at the organic linker results in large charge‐separation lifetimes. The suitable energies for band gap and conduction band minimum (CBM) offer great potential for a wide range of photocatalytic reactions, from hydrogen evolution to the selective oxidation of organic substrates.  相似文献   

10.
11.
Improving the efficiency of electron–hole separation and charge‐carrier utilization plays a central role in photocatalysis. Herein, Pt nanoparticles of ca. 3 nm are incorporated inside or supported on a representative metal–organic framework (MOF), UiO‐66‐NH2, denoted as Pt@UiO‐66‐NH2 and Pt/UiO‐66‐NH2, respectively, for photocatalytic hydrogen production via water splitting. Compared with the pristine MOF, both Pt‐decorated MOF nanocomposites exhibit significantly improved yet distinctly different hydrogen‐production activities, highlighting that the photocatalytic efficiency strongly correlates with the Pt location relative to the MOF. The Pt@UiO‐66‐NH2 greatly shortens the electron‐transport distance, which favors the electron–hole separation and thereby yields much higher efficiency than Pt/UiO‐66‐NH2. The involved mechanism has been further unveiled by means of ultrafast transient absorption and photoluminescence spectroscopy.  相似文献   

12.
We designed, synthesized, and characterized a new Zr‐based metal–organic framework material, NU‐1100 , with a pore volume of 1.53 ccg?1 and Brunauer–Emmett–Teller (BET) surface area of 4020 m2g?1; to our knowledge, currently the highest published for Zr‐based MOFs. CH4/CO2/H2 adsorption isotherms were obtained over a broad range of pressures and temperatures and are in excellent agreement with the computational predictions. The total hydrogen adsorption at 65 bar and 77 K is 0.092 g g?1, which corresponds to 43 g L?1. The volumetric and gravimetric methane‐storage capacities at 65 bar and 298 K are approximately 180 vSTP/v and 0.27 g g?1, respectively.  相似文献   

13.
14.
To develop a metal–organic framework (MOF) for hydrogen storage, SNU‐200 incorporating a 18‐crown‐6 ether moiety as a specific binding site for selected cations has been synthesized. SNU‐200 binds K+, NH4+, and methyl viologen(MV2+) through single‐crystal to single‐crystal transformations. It exhibits characteristic gas‐sorption properties depending on the bound cation. SNU‐200 activated with supercritical CO2 shows a higher isosteric heat (Qst) of H2 adsorption (7.70 kJ mol?1) than other zinc‐based MOFs. Among the cation inclusions, K+ is the best for enhancing the isosteric heat of the H2 adsorption (9.92 kJ mol?1) as a result of the accessible open metal sites on the K+ ion.  相似文献   

15.
Metal‐organic frameworks (MOFs) have drawn increasing attentions as promising candidates for functional devices. Herein, we present MOF films in constructing memory devices with alcohol mediated resistance switching property, where the resistance state is controlled by applying alcohol vapors to achieve multilevel information storage. The ordered packing mode and the hydrogen bonding system of the guest molecules adsorbed in MOF crystals are shown to be the reason for the alcohol mediated electrical switching. This chemically mediated memory device can be a candidate in achieving environment‐responsive devices and exhibits potential applications in wearable information storage systems.  相似文献   

16.
A porous metal–organic framework, Mn(H3O)[(Mn4Cl)3(hmtt)8] (POST‐65), was prepared by the reaction of 5,5′,10,10′,15,15′‐hexamethyltruxene‐2,7,12‐tricarboxylic acid (H3hmtt) with MnCl2 under solvothermal conditions. POST‐65(Mn) was subjected to post‐synthetic modification with Fe, Co, Ni, and Cu according to an ion‐exchange method that resulted in the formation of three isomorphous frameworks, POST‐65(Co/Ni/Cu), as well as a new framework, POST‐65(Fe). The ion‐exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma–atomic emission spectrometry (ICP‐AES), powder X‐ray diffraction (PXRD), and Brunauer–Emmett–Teller (BET) surface‐area analysis. Single‐crystal X‐ray diffractions studies revealed a single‐crystal‐to‐single‐crystal (SCSC)‐transformation nature of the ion‐exchange process. Hydrogen‐sorption and magnetization measurements showed metal‐specific properties of POST‐65.  相似文献   

17.
18.
Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future “smart” technology materials. Metal–organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host–guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus‐responsive MOFs or so‐called smart MOFs. In particular, the various stimuli used and the utility of stimulus‐responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus‐responsive smart MOFs and their applications are proposed from a personal perspective.  相似文献   

19.
Gate‐opening is a unique and interesting phenomenon commonly observed in flexible porous frameworks, where the pore characteristics and/or crystal structures change in response to external stimuli such as adding or removing guest molecules. For gate‐opening that is induced by gas adsorption, the pore‐opening pressure often varies for different adsorbate molecules and, thus, can be applied to selectively separate a gas mixture. The detailed understanding of this phenomenon is of fundamental importance to the design of industrially applicable gas‐selective sorbents, which remains under investigated due to the lack of direct structural evidence for such systems. We report a mechanistic study of gas‐induced gate‐opening process of a microporous metal–organic framework, [Mn(ina)2] (ina=isonicotinate) associated with commensurate adsorption, by a combination of several analytical techniques including single crystal X‐ray diffraction, in situ powder X‐ray diffraction coupled with differential scanning calorimetry (XRD‐DSC), and gas adsorption–desorption methods. Our study reveals that the pronounced and reversible gate opening/closing phenomena observed in [Mn(ina)2] are coupled with a structural transition that involves rotation of the organic linker molecules as a result of interaction of the framework with adsorbed gas molecules including carbon dioxide and propane. The onset pressure to open the gate correlates with the extent of such interaction.  相似文献   

20.
The microporous metal–organic framework (MMOF) Zn4O(L1)2 ? 9 DMF ? 9 H2O ( 1‐H ) and its functionalized derivatives Zn4O(L1‐CH3)2 ? 9 DMF ? 9 H2O ( 2‐CH3 ) and Zn4O(L1‐Cl)2 ? 9 DMF ? 9 H2O ( 3‐Cl ) have been synthesized and characterized (H3L1=4‐[N,N‐bis(4‐methylbenzoic acid)amino]benzoic acid, H3L1‐CH3=4‐[N,N‐bis(4‐methylbenzoic acid)amino]‐2‐methylbenzoic acid, H3L1‐Cl=4‐[N,N‐bis(4‐methylbenzoic acid)amino]‐2‐chlorobenzoic acid). Single‐crystal X‐ray diffraction analyses confirmed that the two functionalized MMOFs are isostructural to their parent MMOF, and are twofold interpenetrated three‐dimensional (3D) microporous frameworks. All of the samples possess enduring porosity with Langmuir surface areas over 1950 cm2 g?1. Their pore volumes and surface areas decrease in the order 1‐H > 2‐CH3 > 3‐Cl . Gas‐adsorption studies show that the H2 uptakes of these samples are among the highest of the MMOFs (2.37 wt % for 3‐Cl at 77 K and 1 bar), although their structures are interpenetrating. Furthermore, this work reveals that the adsorbate–adsorbent interaction plays a more important role in the gas‐adsorption properties of these samples at low pressure, whereas the effects of the pore volumes and surface areas dominate the gas‐adsorption properties at high pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号