首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
Polycyclic aromatic hydrocarbons (PAHs) are key components of organic electronics. The electronic properties of these carbon‐rich materials can be controlled through doping with heteroatoms such as B and N, however, few convenient syntheses of BN‐doped PAHs have been reported. Described herein is the rationally designed, two‐step syntheses of previously unknown ixene and BN‐doped ixene (B2N2‐ixene), and their characterizations. Compared to ixene, B2N2‐ixene absorbs longer‐wavelength light and has a smaller electrochemical energy gap. In addition to its single‐crystal structure, scanning tunneling microscopy revealed that B2N2‐ixene adopts a nonplanar geometry on a Au(111) surface. The experimentally obtained electronic structure of B2N2‐ixene and the effect of BN‐doping were confirmed by DFT calculations. This synthesis enables the efficient and convenient construction of BN‐doped systems with extended π‐conjugation that can be used in versatile organic electronics applications.  相似文献   

3.
Based on quantum chemistry calculations combined with the Marcus–Hush electron transfer theory, we investigated the charge‐transport properties of oligothiophenes (nTs) and oligopyrroles (nPs) (n=6, 7, 8) as potential p‐ or n‐type organic semiconductor materials. The results of our calculations indicate that 1) the nPs show intrinsic hole mobilities as high as or even higher than those of nTs, and 2) the vertical ionization potentials (VIPs) of the nPs are about 0.6–0.7 eV smaller than the corresponding VIPs of the nTs. Based on their charge‐transport ability and hole‐injection efficiency, the nPs have potential as p‐type organic semiconducting materials. Furthermore, it was also found that the maximum values of the electron‐transfer mobility for the nTs are larger by one‐to‐two orders of magnitude than the corresponding maximum values of hole‐transfer mobility, which suggests that the nTs have the potential to be developed as promising n‐type organic semiconducting materials owing to their electron mobility.  相似文献   

4.
Perovskites are generally formed in the non‐polar Pnma phase. The materials found in the polar subgroup of Pnma are not common. This article reports how perovskites having a low tolerance factor display ferroelectric instabilities in artificially constrained Pnma phase. The bond length distribution and the bond valence sum were analyzed to examine the origin of the ferroelectric behavior of low tolerance factor materials. However, the ground state structure of low tolerance perovskite is not Pnma phase, but either ilmenite (R ) or lithium niobate (R3c) phase. Here, epitaxial strain was used as a tuning parameter to stabilize the polar subgroup of Pnma. The rationalized principles from these studies will be valuable for designing new ferroelectric materials in the future.  相似文献   

5.
TiO2 doped with transition metals shows improved photocatalytic efficiency. Herein the electronic and optical properties of Mo‐doped TiO2 with defects are investigated by DFT calculations. For both rutile and anatase phases of TiO2, the bandgap decreases continuously with increasing Mo doping level. The 4d electrons of Mo introduce localized states into the forbidden band of TiO2, and this shifts the absorption edge into the visible‐light region and enhances the photocatalytic activity. Since defects are universally distributed in TiO2 or doped TiO2, the effect of oxygen deficiency due to oxygen vacancies or interstitial Mo atoms is systemically studied. Oxygen vacancies associated with the Mo dopant atoms or interstitial Mo will reduce the spin polarization and magnetic moment of Mo‐doped TiO2. Moreover, oxygen deficiency has a negative impact on the improved photocatalytic activity of Mo‐doped TiO2. The current results indicate that substitutional Mo, interstitial Mo, and oxygen vacancy have different impacts on the electronic/optical properties of TiO2 and are suited to different applications.  相似文献   

6.
We designed a cyclic borane (B6H12) molecule with a benzene‐like structure, in which the six B atoms are located in the same plane. Three methods of B3LYP, MP2, and CCSD with the 6‐311++G** basis were used to investigate its structure, electronic property, and stability. Next, we calculated the stability and electronic property of three hydroboron derivatives with fused rings of B10H18, B14H24, and B16H26. Finally, we investigated three types of novel two‐dimensional infinite hydroboron sheets with diborane as a building block. The results of the phonon spectra ensure the dynamic stability of these predicted structures. Furthermore, the three types of hydroboron sheets are shown to have different band gap energies of less than 3.0 eV. Some investigations on the optical properties have also been performed. The predicted sheets are candidates for semiconductors, whose band gap energy can be tuned by the positions of the bridge hydrogen atoms in the sheets.  相似文献   

7.
Development of chemically doped high performance n‐type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n‐type chemical doping of organic semiconductors is described, enabling high performance TE materials. The Bi interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal (TDPPQ) molecules endows the film with a balanced electrical conductivity of 3.3 S cm?1 and a Seebeck coefficient of 585 μV K?1. The newly developed TE material possesses a maximum power factor of 113 μW m?1 K?2, which is at the forefront for organic small molecule‐based n‐type TE materials. These studies reveal that fine‐tuning of the heavy metal doping of organic semiconductors opens up a new strategy for exploring high performance organic TE materials.  相似文献   

8.
Introduction of defects and nitrogen doping are two of the most pursued methods to tailor the properties of graphene for better suitability to applications such as catalysis and energy conversion. Doping nitrogen atoms at defect sites of graphene and codoping them along with boron atoms can further increase the efficiency of such systems due to better stability of nitrogen at defect sites and stabilization provided by B?N bonding. Systematic exploration of the possible doping/codoping configurations reflecting defect regions of graphene presents a prevalent doping site for nitrogen‐rich BN clusters and they are also highly suitable for modulating (0.2–0.9 eV) the band gap of defect graphene. Such codoped systems perform significantly better than the platinum surface, undoped defect graphene, and the single nitrogen or boron atom doped defect graphene system for dioxygen adsorption. Significant stretching of the O?O bond indicates a lowering of the bond breakage barrier, which is advantageous for applications in the oxygen reduction reaction.  相似文献   

9.
10.
The OH? and OH adsorption structures on Au55 and Au13 nanoparticles surfaces are analyzed using density functional theory. The most stable OH? adsorption site of Au55 and Au13 nanoparticles is found to be the vertex top site followed by the (111)‐(100) edge bridge site. On the contrary, the stability order of OH adsorption is opposite to that of OH?. The adsorption of OH? is calculated to be weaker than that of OH, which shows different charge transfer and interactions with gold surface. Coadsorption on nanoparticles is studied to find that multiple OH? species prefer the most stable sites of single OH? adsorption. The hydrogen bonding between adsorbed OH? on gold surface is a key factor in stabilizing the adsorbates on the Au surface. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
The adsorption properties of water molecules on an MgSO4(100) surface were investigated by using density functional theory (DFT) and supercell models. Optimized stable geometries of one and more than one water molecules adsorbed on an ideal MgSO4(100) surface were obtained. The configurations with water molecules adsorbed on atoms of the second and third atomic layers of the MgSO4(100) surface are quite stable. After adsorption, the separations between both the adjacent Mg atoms (RMg? Mg) and the adjacent O atoms of the surface (RO? O) increase, which indicates that the MgSO4(100) surface starts to deliquesce. In addition, water molecules are more likely to adsorb onto a defective surface rather than an ideal surface. Mulliken population analysis suggests that fewer charges transfer to the water molecule from the Mg atom of a defective substrate. Finally, Raman spectra were calculated for 0.5, 1, and 2 ML (ML=monolayer) water adsorbed on an MgSO4(100) surface, which is helpful for further related experiments.  相似文献   

12.
The energetic and electronic properties of N/V‐doped and N‐V‐codoped anatase TiO2 (101) surfaces are investigated by first‐principles calculations, with the aim to elucidate the relationship between the electronic structure and the photocatalytic performance of N‐V‐codoped TiO2. Several substitutional and interstitial configurations for the N and/or V impurities in the bulk phase and on the surface are studied, and the relative stability of different doping configurations is compared by the impurity formation energy. Systematic calculations reveal that N and V impurities can be encapsulated by TiO2 to form stable structures as a result of strong N‐V interactions both in the bulk and the surface model. Through analyzing and comparing the electronic structures of different doping systems, the synergistic doping effects are discussed in detail. Based on these discussions, we suggest that NOVTi codoping cannot only narrow the band gap of anatase TiO2, but also forms impurity states, which are propitious for the separation of photoexcited electron–hole pairs. In the case of NOVTi‐codoped TiO2 (101) surfaces, this phenomenon is especially prominent. Finally, a feasible synthesis route for NOVTi codoping into anatase TiO2 is proposed.  相似文献   

13.
We have examined the optimal interface structure, ideal work of adhesion and bonding character of polar Ti(110)/TiN(111) interfaces by first‐principles density‐functional plane‐wave pseudopotential calculations. Both Ti‐ and N‐terminated interfaces, including six different interface structures, were calculated. The interface structure for each termination, continuing the TiN crystal structure across the interface, has the largest work of adhesion. Although both terminations yield substantial adhesion energies in the range 3–7 J m?2, the N‐terminated interface is ~4 J m?2 stronger than the Ti‐terminated interface. Analysis of the interfacial electronic structure shows that the Ti‐terminated interface is a mixed strong, metallic and weak covalent character, whereas the N‐terminated interface is a polar covalent bond similar to the Ti/TiC interface. Further study of the separation of the optimal interface shows that the cleavages will never fracture at the interface due to the strong bonding, which is consistent with the experimental results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
基于密度泛函理论(DFT)的第一性原理计算,研究了过渡金属元素Sc、Cr和Mn掺杂对Mg2Ge晶体光、电、磁性质的影响。结果表明,Sc掺杂能使Mg2Ge的费米能级进入导带,呈n型简并半导体;Cr和Mn掺杂能使Mg2Ge能带结构和态密度在费米能级附近产生自旋劈裂而形成净磁矩,表现为半金属磁体和稀磁半导体,体系净磁矩均来自杂质原子3d轨道电子及其诱导极化的Ge4p态和Mg2p态自旋电子。与本征Mg2Ge相比,掺杂体系静态介电常数增大,扩展了吸收光谱,提升了近红外光波段吸收能力。  相似文献   

15.
We investigate the thermoelectric properties of GaN with p-and n-type doping by the first principles calculation and the semi-classical Boltzmann theory. We find that the power factors (S2σof p-type GaN (-3500 W/mK2) is about twice that of the n-type (-1750 W/mK2), which indicates the thermoelectric properties of p-type GaN would be better. Thermal conductivity of GaN crystal decreases rapidly as the temperature increases, but it is still too large for thermoelectric applications. The figure of merit (ZT) estimated at 1500 K is 0.134 for p-type GaN crystal and 0.062 for the n-type.  相似文献   

16.
We present first‐principles calculations on the (001) surfaces of cubic PbTiO3 with PbO and TiO2 terminations. The cleavage energy, surface energy, surface grand potential, surface relaxation and surface electronic structure have been investigated by using the projector‐augmented wave method under generalized gradient approximation (GGA). The results show that surface energy of a TiO2‐terminated surface is a little lower than that of a PbO‐terminated one, thus allowing both terminations to coexist. The PbO‐termination is stable in O‐ and Pb‐rich environments, while on the contrary, the TiO2‐termination is stable in O‐ and Pb‐poor conditions. In addition, the surface rumpling S of a PbO‐terminated surface is slightly larger than that of a TiO2‐terminated one. The relaxations dominantly take place on the outermost three layers, and an oscillatory (? + ?) damping (|Δd12 | > | Δd23 | > | Δd34|) relaxation phenomenon appears for both terminations. The band gaps of both PbO‐ and TiO2‐terminations are slightly lower than that of the bulk. Moreover, the DOS curves of each layer show that for the TiO2‐termination, the top of the valence band of the first and third TiO2 layers moves toward Fermi level. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Nanoadhesion on a self‐assembled monolayer of 4‐methyl‐4′‐mercaptobiphenyl is measured using a modified atomic force microscope. The dependence of the adhesion force on the loading rate is analyzed with the Dudko–Hummer–Szabo model, and the kinetic and interaction potential parameters for a single terminal group are extracted. The energy and location of the activation barrier suggest that the adhesion is dominated by van der Waals dispersion forces. The humidity effect on the nanoadhesion is also studied. The results are compared with previously measured values for methyl‐terminated alkane thiols and the influence of the thiol rigidity on the adhesion force is discussed.  相似文献   

18.
The vibrational properties of barium peroxide, BaO2, were investigated by phonon calculations based on density‐functional theory and the ab initio force‐constant method. In order to reproduce the correct wavenumber of the peroxide vibration at finite temperatures, its volume dependence together with the calculated volume expansion was taken into account. Using this approximation we found a quantitative agreement of the calculated value with experimental data observed by Raman spectroscopy.  相似文献   

19.
Adsorption energies and density of states for O atoms adsorption on the Ti3Al (0001) surface have been calculated using first‐principles calculations based on density functional theory. It is found that the order of O atom adsorption on the Ti3Al (0001) surface is associated with the adsorption energy as well as the distance of O atoms because of the interaction. The adsorption energy mainly depends on the bond number and bond strength between O and Ti atoms, and the adsorption site with rich‐Ti surface (HI and HCPAl) is first priority. The adsorption energy decreases with the increase of the oxygen coverage because of the characteristics of the valence d‐orbitals of transition metals surface. Furthermore, the density of states indicates that the hybridization peak of O and Ti atoms is mainly from the contribution of Ti 3d‐ and O 2p‐orbitals, and the hybridization peak of O and Al atoms from the contribution of Al 2p‐ and O 2p‐orbitals. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Herein Ce1?xFexO2?δ nanocomposites were investigated for dilute magnetic semiconductor (DMS) properties. Ce1?xFexO2?δ nanospheres and porous nanostructures with high surface areas have been successfully prepared by electrochemical deposition at room temperature and atmospheric pressure. The structures and morphologies of Ce1?xFexO2?δ deposits were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption–desorption techniques. The magnetic properties of the prepared Ce1?xFexO2?δ nanospheres and porous nanostructures were studied, and they showed room‐temperature ferromagnetism and giant magnetic moments. In addition, the effects of morphologies and compositions on the magnetic properties of Ce1?xFexO2?δ deposits were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号