首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanochemical synthesis of CsPbI3, as a model system for ABX3 halides, was studied. Water was shown to strongly promote the kinetics of formation of CsPbI3 from the CsI+PbI2 mixture through increased mobility of the constituting ionic species. Since many binary and ternary halides are hygroscopic, it was concluded that the presence of small, uncontrollable and unintentional additions of water should often occur in both precursor mixtures and synthesized complex halides boosting the kinetics of formation of many, if not all, ternary organic–inorganic hybrid halides such as, for example, MAPbX3 (X=Cl, Br, I). In addition, trace amounts of water should influence the transport characteristics of complex halides. Thus, the presence of water explains, at least partially, the huge scatter in both the reported mechanochemical reaction times necessary for obtaining single-phase APbX3 perovskite halides and the activation energies of ionic diffusion in APbX3.  相似文献   

2.
Hybrid organic–inorganic lead halide perovskite APbX3 pigments, such as methylammonium lead iodide, have recently emerged as excellent light harvesters in solid‐state mesoscopic solar cells. An important target for the further improvement of the performance of perovskite‐based photovoltaics is to extend their optical‐absorption onset further into the red to enhance solar‐light harvesting. Herein, we show that this goal can be reached by using a mixture of formamidinium (HN=CHNH3+, FA) and methylammonium (CH3NH3+, MA) cations in the A position of the APbI3 perovskite structure. This combination leads to an enhanced short‐circuit current and thus superior devices to those based on only CH3NH3+. This concept has not been applied previously in perovskite‐based solar cells. It shows great potential as a versatile tool to tune the structural, electrical, and optoelectronic properties of the light‐harvesting materials.  相似文献   

3.
Moisture is shown to activate the reaction between PbI2 and methylammonium halides. In addition, two activating mechanisms are proposed for the formation of CH3NH3PbI3 and CH3NH3PbI3?xClx films from a series of carefully controlled experiments. When these rapidly formed perovskite films are directly fabricated into the devices, poor photovoltaic properties are found, due to heavy surface charge recombination. However, the cell performance can be significantly enhanced to 13.63 % and to over 12 % in the steady state for CH3NH3PbI3 and to 15.50 % and over 14 % in the steady state for CH3NH3PbI3?xClx, if the rapidly formed perovskite film is annealed. Thus, it is believed that moisture (below 60 % RH) is not a problem for the fabrication of highly efficient perovskite solar cells.  相似文献   

4.
Improved charge extraction and wide spectral absorption promote power conversion efficiency of perovskite solar cells (PSCs). The state‐of‐the‐art carbon‐based CsPbBr3 PSCs have an inferior power output capacity because of the large optical band gap of the perovskite film and the high energy barrier at perovskite/carbon interface. Herein, we use alkyl‐chain regulated quantum dots as hole‐conductors to reduce charge recombination. By precisely controlling alkyl‐chain length of ligands, a balance between the surface dipole induced charge coulomb repulsive force and quantum tunneling distance is achieved to maximize charge extraction. A fluorescent carbon electrode is used as a cathode to harvest the unabsorbed incident light and to emit fluorescent light at 516 nm for re‐absorption by the perovskite film. The optimized PSC free of encapsulation achieves a maximum power conversion efficiency up to 10.85 % with nearly unchanged photovoltaic performances under 80 %RH, 80 °C, or light irradiation in air.  相似文献   

5.
A three‐step method for the deposition of CH3NH3PbI3 perovskite films with a high crystalline structure and large cuboid overlayer morphology is reported. The method includes PbI2 deposition, which is followed by dipping into a solution of C4H9NH3I (BAI) and (BA)2PbI4 perovskite formation. In the final step, the poorly thermodynamically stable (BA)2PbI4 phase converts into the more stable CH3NH3PbI3 perovskite by dipping into a solution of CH3NH3I. The final product is characterized by XRD, SEM, UV/Vis, and photoluminescence analysis methods. The experimental results indicate that the prepared perovskite has cuboids with high crystallinity and large sizes (up to 1 μm), as confirmed by XRD and SEM data. Photovoltaic investigations show that the three‐step method results in higher solar cell efficiency (15 % enhancement in efficiency) with a better reproducibility than the conventional two‐step deposition method.  相似文献   

6.
7.
A convenient protocol to fabricate an organic–inorganic hybrid system with covalently bound light‐harvesting chromophores (stilbene and terphenylene–divinylene) and an electron acceptor (titanium oxide) is described. Efficient energy‐ and electron‐transfer processes may take place in these systems. Covalent bonding between the acceptor chromophores and the titania/silica matrix would be important for electron transfer, whereas fluorescence resonant energy transfer (FRET) would strongly depend on the ratio of donor to acceptor chromophores. Time‐resolved spectroscopy was employed to elucidate the detailed photophysical processes. The coupling of FRET and electron transfer was shown to work coherently to lead to photocurrent enhancement. The photocurrent responses reached a maximum when the hybrid‐material thin film contained 60 % acceptor and 40 % donor.  相似文献   

8.
Cation ordering in ABO3 perovskites adds to their chemical variety and can lead to properties such as ferrimagnetism and magnetoresistance in Sr2FeMoO6. Through high‐pressure and high‐temperature synthesis, a new type of “double double perovskite” structure has been discovered in the family MnRMnSbO6 (R=La, Pr, Nd, Sm). This tetragonal structure has a 1:1 order of cations on both A and B sites, with A‐site Mn2+ and R3+ cations ordered in columns and Mn2+ and Sb5+ having rock salt order on the B sites. The MnRMnSbO6 double double perovskites are ferrimagnetic at low temperatures with additional spin‐reorientation transitions. The ordering direction of ferrimagnetic Mn spins in MnNdMnSbO6 changes from parallel to [001] below TC=76 K to perpendicular below the reorientation transition at 42 K at which Nd moments also order. Smaller rare earths lead to conventional monoclinic double perovskites (MnR)MnSbO6 for Eu and Gd.  相似文献   

9.
Lead halide perovskite nanocrystals (NCs) hold strong promise for a variety of light‐harvesting, emitting, and detecting applications, all of which, however, could be complicated by multicarrier Auger recombination. Therefore, complete documentation of the size‐ and composition‐dependent Auger recombination rates of these NCs is highly desirable, as it can guide system design in many applications. Herein we report the synthesis and Auger measurements of monodisperse APbX3 (A=Cs and FA; X=Cl, Br, and I) NCs in an extensive size range (ca. 3–9 nm). The biexciton Auger lifetime of all the NCs scales linearly with the NC volume. The scaling coefficient is virtually independent of the cation but rather depends sensitively on the anion, and is 0.035, 0.085, and 0.142 ps nm?3 for Cl, Br, and I, respectively. In all of these nanocrystals the Auger recombination is much faster than in standard CdSe and PbSe NCs (ca. 1 ps nm?3).  相似文献   

10.
Halide perovskites have received attention in the field of photocatalysis owing to their excellent optoelectronic properties. However, the semiconductor properties of halide perovskite surfaces and the influence on photocatalytic performance have not been systematically clarified. Now, the conversion of triose (such as 1,3‐dihydroxyacetone (DHA)) is employed as a model reaction to explore the surface termination of MAPbI3. By rational design of the surface termination for MAPbI3, the production rate of butyl lactate is substantially improved to 7719 μg g?1 cat. h?1 under visible‐light illumination. The MAI‐terminated MAPbI3 surface governs the photocatalytic performance. Specially, MAI‐terminated surface is susceptible to iodide oxidation, which thus promotes the exposure of PbII as active sites for this photocatalysis process. Moreover, MAI‐termination induces a p‐doping effect near the surface for MAPbI3, which facilitates carrier transport and thus photosynthesis.  相似文献   

11.
Since the first prediction by Frenkel, many follow‐up studies have been carried out to show the presence of subsurface space‐charge layers having the opposite sign to that of the excess charge at the surface, producing overall neutrality in ionic crystals. However, no precise experimental evidence demonstrating how the aliovalent solutes segregate in the space‐charge region beneath the surface has been provided over the past several decades. By utilizing atomic‐scale imaging and chemical probing in a perovskite oxide, the origin of the surface excess charge at the topmost surface and the position of segregated dopants in the space‐charge region is precisely determined. The impact of the space‐charge contribution to the dopant distribution near the surface in oxide crystals is explored.  相似文献   

12.
Solution methods remain the most popular means for the fabrication of hybrid halide perovskites. However, the solubility of hybrid perovskites has not yet been quantitively investigated. In this study, we present accurate solubility data for MAPbI3, FAPbI3, MAPbBr3 and FAPbBr3 in the two most widely used solvents, DMF and DMSO, and demonstrate huge differences in the solubility behavior depending on the solution compositions. By analyzing the donor numbers of the solvents and halide anions, we rationalize the differences in the solubility behavior of hybrid perovskites with various compositions, in order to take a step forward in the search for better processing conditions of hybrid perovskites for solar cells and optoelectronics.  相似文献   

13.
There have been recent reports on the formation of single‐halide perovskites, CH3NH3PbX3 (X=Cl, Br, I), by means of vapor‐assisted solution processing. Herein, the successful formation of mixed‐halide perovskites (CH3NH3PbI3?xXx) by means of a vapor‐assisted solution method at ambient atmosphere is reported. The perovskite films are synthesized by exposing PbI2 film to CH3NH3X (X=I, Br, or Cl) vapor. The prepared perovskite films have uniform surfaces with good coverage, as confirmed by SEM images. The inclusion of chlorine and bromine into the structure leads to a lower temperature and shorter reaction time for optimum perovskite film formation. In the case of CH3NH3PbI3?xClx, the optimum reaction temperature is reduced to 100 °C, and the resulting phases are CH3NH3PbI3 (with trace Cl) and CH3NH3PbCl3 with a ratio of about 2:1. In the case of CH3NH3PbI3?xBrx, single‐phase CH3NH3PbI2Br is formed in a considerably shorter reaction time than that of CH3NH3PbI3. The mesostructured perovskite solar cells based on CH3NH3PbI3 films show the best optimal power conversion efficiency of 13.5 %, whereas for CH3NH3PbI3?xClx and CH3NH3PbI3?xBrx the best recorded efficiencies are 11.6 and 10.5 %, respectively.  相似文献   

14.
Organic–inorganic lead halides have recently emerged as promising alternatives to conventional optoelectronic materials, considering their intriguing physical properties. However, organic–inorganic lead halides featuring chirality are seldom explored. Here, a pair of enantiomorphic organic–inorganic hybrid semiconducting lead halides, (R‐C5H14N2)PbBr4 ( 1R ) and (S‐C5H14N2)PbBr4 ( 2S ), were successfully obtained with the templating of chiral amines. These compounds adopt distinct one‐dimensional infinite quantum helices formed by edge‐shared transformative lead bromide octahedra. Notably, 1R and 2S present mirror circular dichroism (CD) signals due to the chirality transfer of the enantiopure amines. Furthermore, 1R and 2S exhibit phase‐matchable quadratic nonlinear response and typical semiconducting behaviours. This work highlights the potential of lead halides as a new kind of chiral semiconducting materials in spintronic and chiral optical applications.  相似文献   

15.
Pressure‐induced charge transfer from Bi to Ir/Ru is observed in the hexagonal perovskites Ba3+nBiM2+nO9+3n (n=0,1; M=Ir,Ru). These compounds show first‐order, circa 1 % volume contractions at room temperature above 5 GPa, which are due to the large reduction in the effective ionic radius of Bi when the 6s shell is emptied on oxidation, compared to the relatively negligible effect of reduction on the radii of Ir or Ru. They are the first such transitions involving 4d and 5d compounds, and they double the total number of cases known. Ab initio calculations suggest that magnetic interactions through very short (ca. 2.6 Å) M? M bonds contribute to the finely balanced nature of their electronic states.  相似文献   

16.
We show the influence of species present in precursor solution during formation of lead halide perovskite materials on the structural defects of the films. The coordination of lead by competing solvent molecules and iodide ions dictate the type of complexes present in the films. Depending on the processing conditions all PbIS5+, PbI2S4, PbI3S3?, PbI4S22?, PbI5S23?, PbI64?and 1D (Pb2I4)n chains are observed by absorption measurements. Different parameters are studied such as polarity of the solvent, concentration of iodide ions, concentration of solvent molecules and temperature. It is concluded that strongly coordinating solvents will preferentially form species with a low number of iodide ions and less coordinative solvents generate high concentration of PbI6?. We furthermore propose that all these plumbate ions may act as structural defects determining electronic properties of the photovoltaic films.  相似文献   

17.
The in situ formation of functionalized silica nanoparticles is reported. The reactive stabilizers used in the study, [3‐(2‐bromoisobutyryl)propyl]triethoxysilane and [3‐(2‐bromoisobutyryl)propyl]ethoxydimethylsilane, have an atom transfer radical polymerization (ATRP) initiator at the noncondensable end. Condensation with tetraethoxysilane yields silica nanoparticles with a surface‐immobilized initiator. The size of these functionalized silica nanoparticles can be controlled by varying the time of initiator addition and initiator concentration. The silica particle sizes ranged from 10 to 300 nm. With the initiator functionalized silica nanoparticles, ATRP synthesis was performed with styrene, tert‐butyl acrylate, and methyl acrylate to produce organic–inorganic nanomaterials.

  相似文献   


18.
An efficient redox reaction between organic substrates in solution and photoinduced h+vb/e?cb on the surface of photocatalysts requires the substrates or solvent to be adsorbed onto the surface, and is consequentially marked by a normal kinetic solvent isotope effect (KSIE≥1). Reported herein is a universal inverse KSIE (0.6–0.8 at 298 K) for the reductive dehalogenation of aromatic halides which cannot adsorb onto TiO2 in a [D0]methanol/[D4]methanol solution. Combined with in situ ATR‐FTIR spectroscopy investigations, a previously unknown pathway for the transformation of these aromatic halides in TiO2 photocatalysis was identified: a proton adduct intermediate, induced by released H+/D+ from solvent oxidation, accompanies a change in hybridization from sp2 to sp3 at a carbon atom of the aromatic halides. The protonation event leads these aromatic halides to adsorb onto the TiO2 surface and an ET reaction to form dehalogenated products follows.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号