首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in-duct source can be characterized by two acoustical parameters such as the source strength and the source impedance, which permit the prediction of radiated sound pressure or insertion loss of the whole duct system. One-port acoustic characteristics of an in-duct source can be measured by the multiload method using an overdetermined set of open pipes or side-branch pipes with different lengths as applied loads. The input data, viz. load pressure and load impedance, are usually contaminated by measurement error in the actual measurements, which result in errors in the calculated source parameters. In this paper, the effects of the errors in the input data on the results have been studied numerically, varying the number of loads and their impedances in order to determine what combination of the loads will yield the best result. It is noted that, frequently, only a set of open pipes is used when applying the multiload method to the internal combustion engine sources. A set of pipe lengths, which cause the calculated results to be least sensitive to the input data error, can be found when using open pipe loads. The present work is intended to produce guidelines for preparing an appropriate load set in order to obtain accurate source properties of fluid machines.  相似文献   

2.
3.
The one-port source characteristics in a duct system, viz., source impedance and strength, can be determined by using the four-load method. In this paper, to avoid the instability problem of the conventional four-load method, a new formulation for the multiload method has been proposed, which employs an error function based on the linear, time-invariant source model. It is shown that the method is less sensitive to input errors compared to the previous methods. For a 10% input error, the proposed method yields a relative error in the source resistance that is about 1/100 times smaller than for the conventional method. The effectiveness of the present method is demonstrated by two test examples, a loudspeaker and a blower, each operating in a duct. It is observed that the conventional and least-squares methods result in large errors, whereas the present method yields far better agreement with the actual source parameters, as measured by the direct method. The present method is then used to obtain the source parameters on the exhaust side of an operating internal combustion engine. The radiated sound spectrum from the exhaust opening is predicted by using the measured source parameters and the calculated result agrees very well with the measured one.  相似文献   

4.
A porous tube, comprised of a resin-coated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake noise. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. However, the accurate measurement of the wall impedance of a porous woven hose is not easy because of its peculiar acoustical and structural characteristics. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement setup, and, as a result, it is very simple. A variation of the proposed method, an inverse estimation method using one of the four-pole parameters is also proposed. An error sensitivity analysis was performed to investigate the effect of measurement error on the accuracy of the final result. The measured TL for samples with arbitrary lengths and arbitrary porous frequency are in reasonably good agreement with values predicted from curve-fitted impedance data.  相似文献   

5.
尚大晶  李琪  商德江  林翰 《声学学报》2012,37(4):416-423
为测量流激水下翼型结构的流噪声,提出了一种混响箱测量方法。在重力式水洞中搭建了一套实验测量系统,利用混响箱法测量了水下翼型结构模型的辐射声功率。在此基础上研究了流速及结构参数(厚度、肋、声学覆盖层)对其辐射声功率的影响。结果表明:当流速小于5 m/s时,辐射声功率随流速的6次方增长,符合偶极子的辐射规律;当流速大于5 m/s时,辐射声功率随流速的10土1次方规律增长,不再按偶极子的规律辐射;若对水下翼型结构模型加厚、加环肋及外部敷设黏弹性材料,均可在一定程度上抑制流噪声。此研究方法可对水下复杂结构的辐射声功率测量及结构优化设计提供一定的参考。   相似文献   

6.
Experimental results are presented on the effect of both the sound pressure level and the type of spectrum of a sound source on the impedance of an acoustic lining. The spectra under study include those of white noise, a narrow-band signal, and a signal with a preset waveform. It is found that, to obtain reliable data on the impedance of an acoustic lining from the results of interferometric measurements, the total sound pressure level of white noise or the maximal sound pressure level of a pure tone (at every oscillation frequency) needs to be identical to the total sound pressure level of the actual source at the site of acoustic lining on the channel wall.  相似文献   

7.
The didjeridu, or yidaki, is a simple tube about 1.5 m long, played with the lips, as in a tuba, but mostly producing just a tonal, rhythmic drone sound. The acoustic impedance spectra of performers' vocal tracts were measured while they played and compared with the radiated sound spectra. When the tongue is close to the hard palate, the vocal tract impedance has several maxima in the range 1-3 kHz. These maxima, if sufficiently large, produce minima in the spectral envelope of the sound because the corresponding frequency components of acoustic current in the flow entering the instrument are small. In the ranges between the impedance maxima, the lower impedance of the tract allows relatively large acoustic current components that correspond to strong formants in the radiated sound. Broad, weak formants can also be observed when groups of even or odd harmonics coincide with bore resonances. Schlieren photographs of the jet entering the instrument and high speed video images of the player's lips show that the lips are closed for about half of each cycle, thus generating high levels of upper harmonics of the lip frequency. Examples of the spectra of "circular breathing" and combined playing and vocalization are shown.  相似文献   

8.
It is well known that the characterization of the acoustic source in an exhaust muffler system is of utmost importance in the proper evaluation of the acoustic performance of the muffler. However, in the literature, there are very few experimental studies on source characterization of a multi-cylinder internal combustion engine. This paper describes the use of a transfer function method (with a random excitation source) for measurement of the internal source impedance of an eight-cylinder engine under running conditions. The results obtained agree well with those obtained by the standing wave method by earlier investigators. The studies include the effect on the measured internal source impedance caused by variation of engine speed and load. The source impedance results obtained for the engine in operation are compared with those for the engine not in operation. The use of these results in the overall modeling of the exhaust system is described in an accompanying paper.  相似文献   

9.
Ning Han  C.M. Mak   《Applied Acoustics》2008,69(6):566-573
Flow-generated noise problem caused by in-duct elements is due to the complicated acoustic and turbulent interactions of multiple in-duct flow noise sources. The approach of partially coherent sound fields used previously by Mak and Yang [C.M. Mak, J. Yang, Flow-generated noise radiated by the interaction of two strip spoilers in a low speed flow ducts, Acta Acust united with Acustica 88 (2002) 861–868] and Mak [C.M. Mak, A prediction method for aerodynamic sound produced by multiple elements in air ducts, J Sound Vib 287 (2005) 395–403] is adopted to formulate the sound powers produced by interactions of multiple elements at frequencies below and above the cut-on frequency of the lowest transverse duct mode. The study indicates that the level and spectral distribution of the additional acoustic energy produced by the interactions of multiple elements can be predicted based on the measured data with respect to the interactions. The proposed method can form a basis of a generalized prediction method for flow-generated noise produced by multiple elements. The application of the proposed method is supported by two engineering examples.  相似文献   

10.
It has been a challenge in the past to accurately locate and quantify the pass-by noise source radiated by the running vehicles. A system composed of a microphone array is developed in our current work to do this work. An acoustic-holography method for moving sound sources is designed to handle the Doppler effect effectively in the time domain. The effective sound pressure distribution is reconstructed on the surface of a running vehicle. The method has achieved a high calculation efficiency and is able to quantitatively measure the sound pressure at the sound source and identify the location of the main sound source. The method is also validated by the simulation experiments and the measurement tests with known moving speakers. Finally, the engine noise, tire noise, exhaust noise and wind noise of the vehicle running at different speeds are successfully identified by this method.  相似文献   

11.
赵亚林  路达  王绿  申晨  杨彬  陈玉  杨坤德 《应用声学》2022,41(6):938-947
针对高压换流站内交流滤波器组相干噪声源的声功率难以确定的问题,该文提出了一种基于几何声学理论的声功率反演方法。该方法采用可同时考虑噪声源强度和相位的几何声学理论建立相干声场模型,在此基础上构建声功率反演模型,通过寻找使声学模型输出和实测数据差异最小的声源参数(强度和相位),实现了对相干噪声源声功率的反演。数值仿真和实验数据验证了该方法的有效性。  相似文献   

12.
杨德森  张睿  时胜国 《物理学报》2018,67(24):244301-244301
圆柱壳内各型体积源辐射噪声特性研究是声场建模和声场预报的前提.为了研究具有指向性的大尺度体积源特性对水下航行器结构内外声场的影响,本文结合薄壳理论、等效源和柱腔Green函数构造了体积源激励下的壳体振动耦合方程,研究了体积源表面声散射作用和指向性强弱对圆柱壳内外声场的影响.数值计算结果表明,体积源构造的准确性与其等效源位置有关,等效源配置在体积源几何中心与其结构表面之间0.4—0.6时,可以提高声场计算结果的准确性;大尺度体积源表面的声散射作用会导致壳体内部声场结构发生改变,内声场声腔共振峰发生偏移,并且在部分频段引起较强的声透射现象;此外,体积源指向性变化对壳体内外声场强弱影响较小,其显著作用表现在改变了外辐射声场的远场指向性.该研究结果对噪声预报和控制有一定的参考价值.  相似文献   

13.
针对深海声学参数难以通过远距离合作声源反演获取的问题,提出了利用拖船低频噪声近场匹配场反演方法。首先,利用聚焦波束形成计算拖曳阵接收拖船噪声的方向性,获得传播路径特征;然后,构建多参数反演模型,由波数积分声传播模型计算拷贝场,采用遗传算法对多频匹配场目标函数进行反演。同时,采用蒙特卡罗方法分析参数后验概率密度。仿真与试验结果表明:深海环境中拖曳阵接收拖船噪声主要来自海底反射路径,利用该特性反演得到海水深度、噪声源距离、阵列深度、沉积层厚度等参数,多频联合反演可以提高沉积层厚度等参数反演准确性。宽带匹配场处理表明,利用反演最优参数模型能准确给出拖船噪声源的空间位置。   相似文献   

14.
Although it is widely accepted that aircraft noise needs to be further reduced, there is an equally important, on-going requirement to accurately predict the strengths of all the different aircraft noise sources, not only to ensure that a new aircraft is certifiable and can meet the ever more stringent local airport noise rules but also to prioritize and apply appropriate noise source reduction technologies at the design stage. As the bypass ratio of aircraft engines is increased - in order to reduce fuel consumption, emissions and jet mixing noise - the fan noise that radiates from the bypass exhaust nozzle is becoming one of the loudest engine sources, despite the large areas of acoustically absorptive treatment in the bypass duct. This paper addresses this ‘aft fan’ noise source, in particular the prediction of the propagation of fan noise through the bypass exhaust nozzle/jet exhaust flow and radiation out to the far-field observer. The proposed prediction method is equally applicable to fan tone and fan broadband noise (and also turbine and core noise) but here the method is validated with measured test data using simulated fan tones. The measured data had been previously acquired on two model scale turbofan engine exhausts with bypass and heated core flows typical of those found in a modern high bypass engine, but under static conditions (i.e. no flight simulation). The prediction method is based on frequency-domain solutions of the linearized Euler equations in conjunction with perfectly matched layer equations at the inlet and far-field boundaries using high-order finite differences. The discrete system of equations is inverted by the parallel sparse solver MUMPS. Far-field predictions are carried out by integrating Kirchhoff's formula in frequency domain. In addition to the acoustic modes excited and radiated, some non-acoustic waves within the cold stream-ambient shear layer are also captured by the computations at some flow and excitation frequencies. By extracting phase speed information from the near-field pressure solution, these non-acoustic waves are shown to be convective Kelvin-Helmholtz instability waves. Strouhal numbers computed along the shear layer, based on the local momentum thickness also confirm this in accordance with Michalke's instability criterion for incompressible round jets with a similar shear layer profile. Comparisons of the computed far-field results with the measured acoustic data reveal that, in general, the solver predicts the peak sound levels well when the farfield is dominated by the in-duct target mode (the target mode being the one specified to the in-duct mode generator). Calculations also show that the agreement can be considerably improved when the non-target modes are also included, despite their low in-duct levels. This is due to the fact that each duct mode has its own distinct directionality and a non-target low level mode may become dominant at angles where the higher-level target mode is directionally weak. The overall agreement between the computations and experiment strongly suggests that, at least for the range of mean flows and acoustic conditions considered, the physical aeroacoustic radiation processes are fully captured through the frequency-domain solutions to the linearized Euler equations and hence this could form the basis of a reliable aircraft noise prediction method.  相似文献   

15.
针对以舰船辐射噪声为参考声源的浅海海底分层结构及地声参数反演问题,研究了一种基于贝叶斯理论的浅海多层海底地声参数反演方法。反演中以舰船辐射噪声的线谱成分为研究对象,进而采用非线性贝叶斯反演方法反演浅海底层结构、层中声速、声速衰减和密度,并对反演结果的不确定性进行分析。反演结果的最大后验概率估计值和边缘概率分布分别通过拨正模拟退火算法和Metropolis-Hastings采样法在各参数先验区间内计算获得,并根据贝叶斯信息准则确定最佳海底分层结构。海上实验表明:根据该方法反演获得海底分层结构及地声参数,计算得到的声压场与实测舰船辐射噪声传播损失误差不超过10%,反演结果能够准确表征实验海区海底特征。反演结果不确定性分析表明:海底纵波声速、横波声速以及密度的不确定性更小,对声压场变化更加敏感,反演结果更有效、准确。  相似文献   

16.
Acoustic cluster control is proposed for the purpose of achieving global sound attenuation of a planar structure. First, acoustic cluster filtering using a point sensor array is presented, which enables the grouping of sound radiated from a target object into a set of clusters, such that each cluster possesses the same common characteristics. This allows the possibility of extracting the cluster of interest without causing observation spillover. Based on the principle of reciprocity, cluster actuation using a point source array is then presented. Driving the source array in accordance with a proposed control law, the excitation of the designated cluster is performed without causing control spillover. Moreover, by combining both acoustic cluster filtering and acoustic cluster actuation, acoustic cluster control may be performed. In implementing acoustic cluster control, the necessary and sufficient condition for the acoustic cluster control is illustrated. It is also shown that the sound radiated from a planar structure may be captured in appropriate acoustic cluster filtering so that acoustic cluster control may be implemented. Experiment was conducted demonstrating the capability as well as the validity of the acoustic cluster filtering, actuation, and control for suppressing the noise radiated from a rectangular panel.  相似文献   

17.
Patch near-field acoustic holography (NAH) coupled with an array of sound intensity probes allows separating the sound field incident on a surface from the one radiated by the surface itself. Although the measurement principle has been successfully used to separate the noise source contribution from disturbing sources and/or noise reflections, the method accuracy has not been investigated in the literature. We describe the results of experiments meant to evaluate the uncertainty in the identification of noise radiated by vibrating panels with different absorption characteristics in presence of an incident acoustic radiation using the statistically optimized near-field acoustic holography. Measurement errors were evaluated through tests performed in controlled acoustic conditions. Results evidenced that the measurement uncertainty depends on the accuracy of the microphone array positioning and on the incident sound field. These conclusions were in agreement with the results obtained by simulations in the phase of instrument optimization.  相似文献   

18.
Imaging the two acoustic medium parameters density and compressibility requires the use of both the acoustic pressure and velocity wave fields, described via integral equations. Imaging is based on solving for the unknown medium parameters using known measured scattered wave fields, and it is difficult to solve this ill-posed inverse problem directly using a conjugate gradient inversion scheme. Here, a contrast source inversion method is used in which the contrast sources, defined via the product of changes in compressibility and density with the pressure and velocity wave fields, respectively, are computed iteratively. After each update of the contrast sources, an update of the medium parameters is obtained. Total variation as multiplicative regularization is used to minimize blurring in the reconstructed contrasts. The method successfully reconstructed three-dimensional contrast profiles based on changes in both density and compressibility, using synthetic data both with and without 50% white noise. The results were compared with imaging based only on the pressure wave field, where speed of sound profiles were solely based on changes in compressibility. It was found that the results improved significantly by using the full vectorial method when changes in speed of sound depended on changes in both compressibility and density.  相似文献   

19.
The ability of active noise control (ANC) systems to achieve a more pleasant sound has been evaluated by means of sound quality analysis of a real multi-channel active noise controller. Recordings of real car engine noises had been carried out using a HeadacousticsTM binaural head simulator seated in a typical car seat, and these signals together with synthesized noise have been actively controlled in an enclosed room.The sound quality study has focused on the estimation of noise quality changes through the evaluation of the sense of comfort. Two methods have been developed: firstly, a predictive method based on psychoacoustic parameters (loudness, roughness, tonality and sharpness); and secondly, a subjective method using a jury test. Both results have been related to the spectral characteristics of the sounds before and after active control.It can be concluded from both analyses that ANC positively affects acoustic comfort. The engine noise mathematical comfort predictor is based on loudness and roughness (two psychoacoustic parameters directly influenced by ANC), and has satisfactorily predicted the improvements in the pleasantness of the sounds. As far as the subjective evaluation method is concerned, the jury test has showed that acoustic comfort is, in most cases, directly related to the sense of quietness. However, ANC has also been assessed negatively by the jury in the cases that it was unable to reduce the loudness, perhaps because of the low amplitudes of the original sounds.Finally, from what has been shown, it can be said that the subjective improvements strongly depends on the attenuation level achieved by the ANC system operation, as well as the spectral characteristics of the sounds before and after control.  相似文献   

20.
Typically, sound speed in gases is smaller and mass density is much smaller than in liquids, resulting in a very strong acoustic impedance contrast at a gas-liquid interface. Sound transmission through a boundary with a strong impedance contrast is normally very weak. This paper studies the power output of localized sound sources and acoustic power fluxes through a plane gas-liquid interface in a layered medium. It is shown that, for low-frequency sound, a phenomenon of anomalous transparency can occur where most of the acoustic power generated by a source in a liquid half-space can be radiated into a gas half-space. The main physical mechanism responsible for anomalous transparency is found to be an acoustic power transfer by inhomogeneous (evanescent) waves in the plane-wave decomposition of the acoustic field in the liquid. The effects of a liquid's stratification and of guided sound propagation in the liquid on the anomalous transparency of the gas-liquid interface are considered. Geophysical and biological implications of anomalous transparency of water-air interface to infrasound are indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号