首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Let (T t ) t?≥ 0 be a bounded analytic semigroup on L p (Ω), with 1?<?p?<?∞. Let ?A denote its infinitesimal generator. It is known that if A and A * both satisfy square function estimates ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{\frac{1}{2}} T_t(x)\vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^p} \lesssim \|x\|_{L^p}}$ and ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{*\frac{1}{2}} T_t^*(y) \vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^{p^\prime}} \lesssim \|y\|_{L^{p^\prime}}}$ for ${x\in L^p(\Omega)}$ and ${y\in L^{p^\prime}(\Omega)}$ , then A admits a bounded ${H^{\infty}(\Sigma_\theta)}$ functional calculus for any ${\theta>\frac{\pi}{2}}$ . We show that this actually holds true for some ${\theta<\frac{\pi}{2}}$ .  相似文献   

2.
3.
Given a smooth domain ${\Omega\subset\mathbb{R}^N}$ such that ${0 \in \partial\Omega}$ and given a nonnegative smooth function ?? on ???, we study the behavior near 0 of positive solutions of ???u?=?u q in ?? such that u =? ?? on ???\{0}. We prove that if ${\frac{N+1}{N-1} < q < \frac{N+2}{N-2}}$ , then ${u(x)\leq C |x|^{-\frac{2}{q-1}}}$ and we compute the limit of ${|x|^{\frac{2}{q-1}} u(x)}$ as x ?? 0. We also investigate the case ${q= \frac{N+1}{N-1}}$ . The proofs rely on the existence and uniqueness of solutions of related equations on spherical domains.  相似文献   

4.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

5.
Let ${\mathcal{F}}$ be a (0, 1) matrix. A (0, 1) matrix ${\mathcal{M}}$ is said to have ${\mathcal{F}}$ as a configuration if there is a submatrix of ${\mathcal{M}}$ which is a row and column permutation of ${\mathcal{F}}$ . We say that a matrix ${\mathcal{M}}$ is simple if it has no repeated columns. For a given ${v \in \mathbb{N}}$ , we shall denote by forb ${(v, \mathcal{F})}$ the maximum number of columns in a simple (0, 1) matrix with v rows for which ${\mathcal{F}}$ does not occur as a configuration. We say that a matrix ${\mathcal{M}}$ is maximal for ${\mathcal{F}}$ if ${\mathcal{M}}$ has forb ${(v, \mathcal{F})}$ columns. In this paper we show that for certain natural choices of ${\mathcal{F}}$ , forb ${(v, \mathcal{F})\leq\frac{\binom{v}{t}}{t+1}}$ . In particular this gives an extremal characterization for Steiner t-designs as maximal (0, 1) matrices in terms of certain forbidden configurations.  相似文献   

6.
In this paper, a general orthogonal transformation on the optimal quaternary sequence Families ${\mathcal{B}}$ and ${\mathcal{C}}$ is presented. Consequently, the known optimal Family ${\mathcal{D}}$ and a new optimal Family ${\mathcal{E}}$ are produced in a uniform method. In contrast to the known optimal Family ${\mathcal{D}}$ , the new Family ${\mathcal{E}}$ has the same parameters such as the sequence length 2(2 n ? 1), the family size 2 n , and the maximal nontrivial correlation value ${2^{\frac{n+1}{2}}+2}$ , where n is a positive integer, but with a different correlation function.  相似文献   

7.
We consider weak solutions to nonlinear elliptic systems in a W 1,p -setting which arise as Euler equations to certain variational problems. The solutions are assumed to be stationary in the sense that the differential of the variational integral vanishes with respect to variations of the dependent and independent variables. We impose new structure conditions on the coefficients which yield everywhere ${\mathcal{C}^{\alpha}}$ -regularity and global ${\mathcal{C}^{\alpha}}$ -estimates for the solutions. These structure conditions cover variational integrals like ${\int F(\nabla u)\; dx}$ with potential ${F(\nabla u):=\tilde F (Q_1(\nabla u),\ldots, Q_N(\nabla u))}$ and positively definite quadratic forms in ${\nabla u}$ defined as ${Q_i(\nabla u)=\sum_{\alpha \beta} a_i^{\alpha \beta} \nabla u^\alpha \cdot \nabla u^\beta}$ . A simple example consists in ${\tilde F(\xi_1,\xi_2):= |\xi_1|^{\frac{p}{2}} + |\xi_2|^{\frac{p}{2}}}$ or ${\tilde F(\xi_1,\xi_2):= |\xi_1|^{\frac{p}{4}}|\xi_2|^{\frac{p}{4}}}$ . Since the Q i need not to be linearly dependent our result covers a class of nondiagonal, possibly nonmonotone elliptic systems. The proof uses a new weighted norm technique with singular weights in an L p -setting.  相似文献   

8.
We extend the universality theorem for Hecke L-functions attached to ray class characters from the previously known strip ${ \max \{\frac{1}{2}, 1-\frac{1}{d}\} < {\rm Re}\,s < 1}$ for ${d=\left[K:\mathbb{Q}\right]}$ to the maximal strip ${\frac{1}{2} < {\rm Re}\,s < 1}$ under an assumption of a weak version of the density hypothesis. As a corollary, we give a new proof of the universality theorem for the Dedekind zeta function ζ K (s) in the case of ${K/\mathbb{Q}}$ finite abelian.  相似文献   

9.
In the present study, we consider isometric immersions ${f : M \rightarrow \tilde{M}(c)}$ of (2n + 1)-dimensional invariant submanifold M 2n+1 of (2m + 1) dimensional Sasakian space form ${\tilde{M}^{2m+1}}$ of constant ${ \varphi}$ -sectional curvature c. We have shown that if f satisfies the curvature condition ${\overset{\_}{R}(X, Y) \cdot \sigma =Q(g, \sigma)}$ then either M 2n+1 is totally geodesic, or ${||\sigma||^{2}=\frac{1}{3}(2c+n(c+1)),}$ or ${||\sigma||^{2}(x) > \frac{1}{3}(2c+n(c+1)}$ at some point x of M 2n+1. We also prove that ${\overset{\_ }{R}(X, Y)\cdot \sigma = \frac{1}{2n}Q(S, \sigma)}$ then either M 2n+1 is totally geodesic, or ${||\sigma||^{2}=-\frac{2}{3}(\frac{1}{2n}\tau -\frac{1}{2}(n+2)(c+3)+3)}$ , or ${||\sigma||^{2}(x) > -\frac{2}{3}(\frac{1}{2n} \tau (x)-\frac{1}{2} (n+2)(c+3)+3)}$ at some point x of M 2n+1.  相似文献   

10.
For 1≦k≦2 and a sequence $\gamma :={\{\gamma(n)\}}_{n=1}^{\infty}$ that is quasi β-power monotone decreasing with ${\beta>1-\frac{1}{k}}$ , we prove the |A,γ| k summability of an orthogonal series, where A is either a regular or Hausdorff matrix. For ${\beta>-\frac{3}{4}}$ , we give a necessary and sufficient condition for |A,γ| k summability, where A is Hausdorff matrix. Our sufficient condition for ${\beta>-\frac{3}{4}}$ is weaker than that of Kantawala [1], ${\beta>-\frac{1}{k}}$ for |E,q,γ| k summability; and of Leindler [4], β>?1 for |C,α,γ| k , ${\alpha<\frac{1}{4}}$ . Also, our result generalizes the result of Spevakov [6] for |E,q,1|1 summability.  相似文献   

11.
An analog of the Falconer distance problem in vector spaces over finite fields asks for the threshold α?>?0 such that ${|\Delta(E)| \gtrsim q}$ whenever ${|E| \gtrsim q^{\alpha}}$ , where ${E \subset {\mathbb {F}}_q^d}$ , the d-dimensional vector space over a finite field with q elements (not necessarily prime). Here ${\Delta(E)=\{{(x_1-y_1)}^2+\dots+{(x_d-y_d)}^2: x,y \in E\}}$ . Iosevich and Rudnev (Trans Am Math Soc 359(12):6127–6142, 2007) established the threshold ${\frac{d+1}{2}}$ , and in Hart et?al. (Trans Am Math Soc 363:3255–3275, 2011) proved that this exponent is sharp in odd dimensions. In two dimensions we improve the exponent to ${\tfrac{4}{3}}$ , consistent with the corresponding exponent in Euclidean space obtained by Wolff (Int Math Res Not 10:547–567, 1999). The pinned distance set ${\Delta_y(E)=\{{(x_1-y_1)}^2+\dots+{(x_d-y_d)}^2: x\in E\}}$ for a pin ${y\in E}$ has been studied in the Euclidean setting. Peres and Schlag (Duke Math J 102:193–251, 2000) showed that if the Hausdorff dimension of a set E is greater than ${\tfrac{d+1}{2}}$ , then the Lebesgue measure of Δ y (E) is positive for almost every pin y. In this paper, we obtain the analogous result in the finite field setting. In addition, the same result is shown to be true for the pinned dot product set ${\Pi_y(E)=\{x\cdot y: x\in E\}}$ . Under the additional assumption that the set E has Cartesian product structure we improve the pinned threshold for both distances and dot products to ${\frac{d^2}{2d-1}}$ . The pinned dot product result for Cartesian products implies the following sum-product result. Let ${A\subset \mathbb F_q}$ and ${z\in \mathbb F^*_q}$ . If ${|A|\geq q^{\frac{d}{2d-1}}}$ then there exists a subset ${E'\subset A\times \dots \times A=A^{d-1}}$ with ${|E'|\gtrsim |A|^{d-1}}$ such that for any ${(a_1,\dots, a_{d-1}) \in E'}$ , $$ |a_1A+a_2A+\dots +a_{d-1}A+zA| > \frac{q}{2}$$ where ${a_j A=\{a_ja:a \in A\},j=1,\dots,d-1}$ . A generalization of the Falconer distance problem is to determine the minimal α?>?0 such that E contains a congruent copy of a positive proportion of k-simplices whenever ${|E| \gtrsim q^{\alpha}}$ . Here the authors improve on known results (for k?>?3) using Fourier analytic methods, showing that α may be taken to be ${\frac{d+k}{2}}$ .  相似文献   

12.
Let M be a compact orientable n-dimensional hypersurface, with nowhere vanishing mean curvature H, immersed in a Riemannian spin manifold ${\overline{M}}$ admitting a non trivial parallel spinor field. Then the first eigenvalue ${\lambda_1(D_{M}^{H})}$ (with the lowest absolute value) of the Dirac operator ${D_{M}^{H}}$ corresponding to the conformal metric ${\langle\;,\;\rangle^{H}=H^{2}\,\langle\;,\;\rangle}$ , where ${\langle\;,\;\rangle}$ is the induced metric on M, satisfies ${\left|\lambda_1(D_{M}^{H})\right|\le \frac{n}{2}}$ . By applying the Bourguignon-Gauduchon first variational formula, we obtain a necessary condition for ${\left|\lambda_1(D_{M}^{H})\right|=\frac{n}{2}}$ . As a consequence, we prove that round hyperspheres are the only hypersurfaces of the Euclidean space satisfying the equality in the Bär inequality $$\lambda_1(D_{M})^{2}\le \frac{n^{2}}{4{vol}(M)}\int_{M} H^{2}\, dV,$$ where D M stands now for the Dirac operator of the induced metric.  相似文献   

13.
Let ${x: M^{m} \rightarrow \mathbb{S}^{m+1}}$ be an m-dimensional umbilic-free hypersurface in an (m?+?1)-dimensional unit sphere ${\mathbb{S}^{m+1}}$ , with standard metric I?= dx · dx. Let II be the second fundamental form of isometric immersion x. Define the positive function ${\rho=\sqrt{\frac{m}{m-1}}\|II-\frac{1}{m}tr(II)I\|}$ . Then positive definite (0,2) tensor ${\mathbf{g}=\rho^{2}I}$ is invariant under conformal transformations of ${\mathbb{S}^{m+1}}$ and is called M?bius metric. The curvature induced by the metric g is called M?bius curvature. The purpose of this paper is to classify the hypersurfaces with constant M?bius curvature.  相似文献   

14.
Let ${\mathcal{C}}$ be the convex hull of points ${{\{{1 \choose x}{1 \choose x}^T \,|\, x\in \mathcal{F}\subset \Re^n\}}}$ . Representing or approximating ${\mathcal{C}}$ is a fundamental problem for global optimization algorithms based on convex relaxations of products of variables. We show that if n ≤ 4 and ${\mathcal{F}}$ is a simplex, then ${\mathcal{C}}$ has a computable representation in terms of matrices X that are doubly nonnegative (positive semidefinite and componentwise nonnegative). We also prove that if n = 2 and ${\mathcal{F}}$ is a box, then ${\mathcal{C}}$ has a representation that combines semidefiniteness with constraints on product terms obtained from the reformulation-linearization technique (RLT). The simplex result generalizes known representations for the convex hull of ${{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}$ when ${\mathcal{F}\subset\Re^2}$ is a triangle, while the result for box constraints generalizes the well-known fact that in this case the RLT constraints generate the convex hull of ${{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}$ . When n = 3 and ${\mathcal{F}}$ is a box, we show that a representation for ${\mathcal{C}}$ can be obtained by utilizing the simplex result for n = 4 in conjunction with a triangulation of the 3-cube.  相似文献   

15.
In this paper, we describe a relationship between the simplest examples of arithmetic theta series. The first of these are the weight 1 theta series ${\widehat{\phi}_{\mathcal C}(\tau)}$ defined using arithmetic 0-cycles on the moduli space ${\mathcal C}$ of elliptic curves with CM by the ring of integers ${O_{\kappa}}$ of an imaginary quadratic field. The second such series ${\widehat{\phi}_{\mathcal M}(\tau)}$ has weight 3/2 and takes values in the arithmetic Chow group ${\widehat{{\rm CH}}^1(\mathcal{M})}$ of the arithmetic surface associated to an indefinite quaternion algebra ${B/\mathbb{Q}}$ . For an embedding ${O_\kappa \rightarrow O_B}$ , a maximal order in B, and a two sided O B -ideal Λ, there is a morphism ${j_\Lambda:{\mathcal C} \rightarrow {\mathcal M}}$ and a pullback ${j_\Lambda^*: \widehat{{\rm CH}}^1(\mathcal{M}) \rightarrow \widehat{{\rm CH}}^1(\mathcal C)}$ . Our main result is an expression for the pullback ${j^*_\Lambda \widehat{\phi}_{\mathcal M}(\tau)}$ as a linear combination of products of ${\widehat{\phi}_{\mathcal C}(\tau)}$ ’s and classical weight ${\frac{1}{2}}$ theta series.  相似文献   

16.
Let $G$ be a finite group and $\mathrm{bcl}(G)$ the largest conjugacy class length of $G$ . In this note we slightly improve He and Shi’s lower bound for $\mathrm{bcl}(G)$ , showing that $|\mathrm{bcl}(G)|\ge p^{\frac{1}{p}}(|G:O_{p}(G)|_{p})^{\frac{p-1}{p}}$ .  相似文献   

17.
Let D be a digraph. The circular chromatic number ${\chi_c(D)}$ and chromatic number ${\chi(D)}$ of D were proposed recently by Bokal et?al. Let ${\vec{\chi_c}(G)={\rm max}\{\chi_c(D)| D\, {\rm is\, an\, orientation\, of} G\}}$ . Let G be a planar graph and n?≥ 2. We prove that if the girth of G is at least ${\frac{10n-5}{3},}$ then ${\vec{\chi_c}(G)\leq \frac{n}{n-1}}$ . We also study the circular chromatic number of some special planar digraphs.  相似文献   

18.
For real ${L_\infty(\mathbb{R})}$ -functions ${\Phi}$ and ${\Psi}$ of compact support, we prove the norm resolvent convergence, as ${\varepsilon}$ and ${\nu}$ tend to 0, of a family ${S_{\varepsilon \nu}}$ of one-dimensional Schrödinger operators on the line of the form $$S_{\varepsilon \nu} = -\frac{d^2}{dx^2} + \frac{\alpha}{\varepsilon^2} \Phi \left( \frac{x}{\varepsilon} \right) + \frac{\beta}{\nu} \Psi \left(\frac{x}{\nu} \right),$$ provided the ratio ${\nu/\varepsilon}$ has a finite or infinite limit. The limit operator S 0 depends on the shape of ${\Phi}$ and ${\Psi}$ as well as on the limit of ratio ${\nu/\varepsilon}$ . If the potential ${\alpha\Phi}$ possesses a zero-energy resonance, then S 0 describes a non trivial point interaction at the origin. Otherwise S 0 is the direct sum of the Dirichlet half-line Schrödinger operators.  相似文献   

19.
Let ${(\mathcal{M}, \tilde{g})}$ be an N-dimensional smooth compact Riemannian manifold. We consider the problem ${\varepsilon^2 \triangle_{\tilde{g}} \tilde{u} + V(\tilde{z})\tilde{u}(1-\tilde{u}^2)=0\; {\rm in}\; \mathcal{M}}$ , where ${\varepsilon > 0}$ is a small parameter and V is a positive, smooth function in ${\mathcal{M}}$ . Let ${\kappa \subset \mathcal{M}}$ be an (N ? 1)-dimensional smooth submanifold that divides ${\mathcal{M}}$ into two disjoint components ${\mathcal{M}_{\pm}}$ . We assume κ is stationary and non-degenerate relative to the weighted area functional ${\int_{\kappa}V^{\frac{1}{2}}}$ . For each integer m ≥ 2, we prove the existence of a sequence ${\varepsilon = \varepsilon_\ell \rightarrow 0}$ , and two opposite directional solutions with m-transition layers near κ, whose mutual distance is ${{\rm O}(\varepsilon | \log \varepsilon | )}$ . Moreover, the interaction between neighboring layers is governed by a type of Jacobi–Toda system.  相似文献   

20.
Starting from two Lagrangian immersions and a Legendre curve ${\tilde{\gamma}(t)}$ in ${\mathbb{S}^3(1)}$ $({\rm or\,in}\,{\mathbb{H}_1^3(-1)})$ , it is possible to construct a new Lagrangian immersion in ${\mathbb{CP}^n(4)}$ $({\rm or\,in}\,{\mathbb{CH}^n(-4)})$ , which is called a warped product Lagrangian immersion. When ${\tilde{\gamma}(t)=(r_1e^{i(\frac{r_2}{r_1}at)}, \;r_2e^{i(- \frac{r_1}{r_2}at)})}$ $({\rm or}\,{\tilde{\gamma}(t)=(r_1e^{i(\frac{r_2}{r_1}at)}, \;r_2e^{i( \frac{r_1}{r_2}at)})})$ , where r 1, r 2, and a are positive constants with ${r_1^2+r_2^2=1}$ $({\rm or}\,{-r_1^2+r_2^2=-1})$ , we call the new Lagrangian immersion a Calabi product Lagrangian immersion. In this paper, we study the inverse problem: how to determine from the properties of the second fundamental form whether a given Lagrangian immersion of ${\mathbb{CP}^n(4)}$ or ${\mathbb{CH}^n(-4)}$ is a Calabi product Lagrangian immersion. When the Calabi product is minimal, or is Hamiltonian minimal, or has parallel second fundamental form, we give some further characterizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号