首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new spectrofluorimetric method was developed for the determination of trace amounts of lecithin using the ciprofloxacin (CIP)–terbium (Tb3+) ion complex as a fluorescent probe. In a buffer solution at pH=5.60, lecithin can remarkably reduce the fluorescence intensity of the CIP–Tb3+ complex at λ=545 nm. The reduced fluorescence intensity of the Tb3+ ion is proportional to the concentration of lecithin. Optimum conditions for the determination of lecithin were also investigated. The linear range and detection limit for the determination of lecithin were 1.0×10−6–3.0×10−5 mol L−1 and 3.44×10−7 mol L−1, respectively. This method is simple, practical, and relatively free of interference from coexisting substances. Furthermore, it has been successfully applied to assess lecithin in serum samples.   相似文献   

2.
A new flow injection chemiluminescent immunoassay was developed for the detection of 17β-estradiol (E2). The method uses p–iodophenol (PIP) as enhancer and is based on a solid-phase immunoassay format in which an E2–OVA immobilized immunoaffinity column inserted in the flow system is used to trap unbound horseradish peroxidase (HRP)-labeled anti-E2 antibody after an off-line incubation of E2 with HRP-labeled anti-E2 antibody. The trapped enzyme conjugate was detected by injecting substrates to produce an enhanced chemiluminescence (CL) response. The linear range for E2 was 10.0–1,000.0 ng mL−1 with a correlation coefficient of 0.996 and a detection limit of 3.0 ng mL−1. The sampling and chemiluminescence detection time for one sample was 400 s after a pre-incubation procedure of 30 min. Serum samples detected by this method were in good agreement with the results obtained by EIA with E2–biotin.   相似文献   

3.
A new kind of magnetic dextran microsphere (MDMS) with uniform shape and narrow diameter distribution has been prepared from magnetic iron nanoparticles and dextran. Horseradish peroxidase (HRP) was successfully immobilized on the surface of an MDMS-modified glassy-carbon electrode (GCE), and the immobilized HRP displayed excellent electrocatalytic activity in the reduction of H2O2 in the presence of the mediator hydroquinone (HQ). The effects of experimental variables such as the concentration of HQ, solution pH, and the working potential were investigated for optimum analytical performance. This biosensor had a fast response to H2O2 of less than 10 s and an excellent linear relationship was obtained in the concentration range 0.20 μmol L−1–0.68 mmol L−1, with a detection limit of 0.078 μmol L−1 (S/N = 3) under the optimum conditions. The response showed Michaelis–Menten behavior at larger H2O2 concentrations, and the apparent Michaelis–Menten constant was estimated to be 1.38 mmol L−1. Moreover, the selectivity, stability, and reproducibility of the biosensor were evaluated, with satisfactory results. Figure Amperometric response of the biosensor to successive additions of H2O2 and the plot of amperometric response vs. H2O2 concentration  相似文献   

4.
Cholesterol oxidase (ChOx), cholesterol esterase (ChEt), and horseradish peroxidase (HRP) have been co-immobilized covalently on a self-assembled monolayer (SAM) of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTS) deposited on an indium–tin–oxide (ITO) glass surface. These enzyme-modified (ChOx-ChEt-HRP/AEAPTS/ITO) biosensing electrodes have been used to estimate cholesteryl oleate from 10 to 500 mg dL−1. The sensitivity, K m value, and shelf-life of these ChEt-ChOx-HRP/AEAPTS/ITO biosensing electrodes have been found to be 124 nA mg−1 dL, 95.098 mg dL−1 (1.46 mmol L−1), and ten weeks, respectively. The ChEt-ChOx-HRP/AEAPTS/ITO bio-electrodes have been used to estimate total cholesterol in serum samples. Figure Covalent immobilization of enzymes onto AEAPTS/ITO surface using EDC/NHS chemistry Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
A supramolecular catalytic kinetic spectrofluorimetric method was developed for the determination of platinum(IV) and the possible mechanism of catalytic reaction was discussed. The method was based on the fluorescence-enhancing reaction of salicylaldehyde furfuralhydrazone (SAFH) with potassium bromate, which was catalysed by platinum(IV) in a water–ethanol medium. β–Cyclodextrin (β-CD) obviously sensitized the determination at pH 5.20 and 25°C. Under optimum conditions, the β-CD–platinum–KBrO3–SAFH supramolecular kinetic catalytic reaction system had excitation and emission maxima at 372 and 461 nm, respectively. The linear range of this method was 0.60–180 ng ml−1 with a relative standard deviation of 1.2%, and the detection limit was 0.18 ng ml−1. Investigation of the mechanism and the effects of interferences is presented. The proposed method was applied successfully to determine trace platinum(IV) in the chemotherapeutic drug cisplatin and serum from patients with satisfactory results.   相似文献   

6.
A method based on use of functionalized gold nanoparticles on polyethylenimine film has been developed for colorimetric detection of immunoglobulin G (IgG). The immunogold nanoparticles were immobilized on quartz slides by recognition between antibody and antigen, with the antigen chemically adsorbed on the polyethylenimine film. By measurement of the UV–visible spectra of the immobilized immunogold, detection of h-IgG was achieved. The detection limit for h-IgG by use of this method can be as low as 0.01 μg mL−1. This method is quite promising for numerous applications in immunoassay. Figure  相似文献   

7.
A novel method was developed for the determination of captan, folpet, and captafol in apples by dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD). Some experimental parameters that influence the extraction efficiency, such as the type and volume of the disperser solvents and extraction solvents, extraction time, and addition of salt, were studied and optimized to obtain the best extraction results. Under the optimum conditions, high enrichment factors for the compounds were achieved ranging from 824 to 912. The recoveries of fungicides in apples at spiking levels of 20.0 μg kg−1 and 70.0 μg kg−1 were 93.0–109.5% and 95.4–107.7%, respectively. The relative standard deviations (RSDs) for the apple samples at 30.0 μg kg−1 of each fungicide were in the range from 3.8 to 4.9%. The limits of detection were between 3.0 and 8.0 μg kg−1. The linearity of the method ranged from 10 to 100 μg kg−1 for the three fungicides, with correlation coefficients (r 2) varying from 0.9982 to 0.9997. The obtained results show that the DLLME combined with GC–ECD can satisfy the requirements for the determination of fungicides in apple samples. Figure Dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD) allows satisfactory determination of fungicides in apple samples  相似文献   

8.
A capacitive biosensor for the detection of bacterial endotoxin has been developed. Endotoxin-neutralizing protein derived from American horseshoe crab was immobilized to a self-assembled thiol layer on a biosensor transducer (Au). Upon injection of a sample containing endotoxin, a decrease in the observed capacitive signal was registered. Endotoxin could be determined under optimum conditions with a detection limit of 1.0 × 10−13 M and linearity ranging from 1.0 × 10−13 to 1.0 × 10−10 M. Good agreement was achieved when applying endotoxin preparations purified from an Escherichia coli cultivation to the capacitive biosensor system, utilizing the conventional method for quantitative endotoxin determination, the Limulus amebocyte lysate test as a reference. The capacitive biosensor method was statistically tested with the Wilcoxon signed rank test, which proved the system is acceptable for the quantitative analysis of bacterial endotoxin (P < 0.05). Figure The flow-injection capacitive biosensor system and the capacitive properties of the transducer surface, where CSAM is the capacitance change of the self-assembled thiol monolayer, CP is the capacitance change of the protein layer, Ca is the capacitance change of the analyte layer and CTotal is the total capacitance change measured at the working electrode/solution interface (modified from Limbut et al., 2006. Biosens Bioelectron 22: 233-240)  相似文献   

9.
A linear sweep adsorptive stripping voltammetric method for the determination of netilmicin in the presence of formaldehyde has been proposed for the first time. In the presence of 3.0×10−3 g ml−1 formaldehyde, netilmicin exhibits a sensitive cathodic peak at −1.30 V (vs. the saturated calomel electrode, SCE) in a medium of Britton–Robinson buffer (pH 8.7) with a scan rate of 100 mV s−1 after a preconcentration period of 120 s at −1.10 V (vs. SCE). The peak current showed a linear dependence on the netilmicin concentration over the range 4.2×10−9–1.0×10−7 g ml−1. The achieved limits of detection and quantitation were 1.0×10−10 and 3.3×10−10 g ml−1 netilmicin, respectively. It was deduced from the experiments that the amine–aldehyde condensation product formed between netilmicin and formaldehyde is mainly responsible for the appearance of the peak. The electrochemical behavior of netilmicin in the presence of formaldehyde has been studied. The method was applied to the direct determination of netilmicin in injectable formulations and spiked human urine and serum samples.   相似文献   

10.
An X-ray fluorescence method (XRF) is presented that allowed low detection limits (at the 0.1–23 ng mL−1 level) to be obtained for Cr, Mn, Fe, Ni, Zn, Sr, Pb, Bi and Br in water. The samples were prepared using a thin layer method. Trace elements were determined via the calibration curve and standard addition. Absorption effects and inhomogenities in prepared samples were checked for using the emission–transmission method and internal standards, respectively. The results from the XRF method were compared with the results from the inductively coupled plasma atomic emission spectrometry method.   相似文献   

11.
A novel electrochemical sensor for methyl parathion based on silicate– cetyltrimethylammonium bromide nanocomposite film has been fabricated by electro-assisted deposition onto glassy carbon electrode in one-step via an electrochemical modulation of pH at the electrode/solution interface to promote controlled gelification of tetraethylorthosilicate sol, and was characterized with scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The electrochemical sensing of methyl parathion on the film-modified electrode was investigated applying cyclic voltammetry and square wave voltammetry. Compared to the unmodified electrode, the shapes of the redox peaks were improved and the peak currents significantly increased. Experimental parameters such as deposition time, pH value, and accumulation conditions have been optimized. A linear relationship between the peak current and methyl parathion concentration was obtained in the range from 1.0 × 10−7 to 1.0 × 10−4 mol L−1 with a detection limit of 1.04 × 10 −8 mol L−1 (S/N = 3) after accumulation at 0 V for 120 s. The film electrode shows great promise for determination of methyl parathion in real samples.   相似文献   

12.
A sensitive and solvent-free method for the determination of ten polycyclic aromatic hydrocarbons, namely, naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene and chrysene, with up to four aromatic rings, in milk samples using headspace solid-phase microextraction and gas chromatography–mass spectrometry detection has been developed. A polydimethylsiloxane–divinylbenzene fiber was chosen and used at 75°C for 60 min. Detection limits ranging from 0.2 to 5 ng L−1 were attained at a signal-to-noise ratio of 3, depending on the compound and the milk sample under analysis. The proposed method was applied to ten different milk samples and the presence of six of the analytes studied in a skimmed milk with vegetal fiber sample was confirmed. The reliability of the procedure was verified by analyzing two different certified reference materials and by recovery studies. Figure Milk is safe, healthy food  相似文献   

13.
A novel small-volume fiber-optic evanescent-wave absorption sensor based on the Griess–Ilosvay reaction has been developed and evaluated for nitrite determination. The sensor was constructed by inserting a decladded optical fiber into a transparent capillary to form an annular column microchannel. The Evanescent wave (EW) field produced on the optical fiber core surface penetrated into the surrounding medium and interacted with the azo dye, which was generated by the reaction of nitrite and nitrite-sensitive reagents. The detector was designed to be parallel to the axis of the optical fiber. The defined absorbance was linear with the concentration of nitrite in the range from 0.05 to 10 mg L−1, and the detection limit was 0.02 mg L−1 (3σ) with the relative standard deviation (RSD) of 2.6% (n = 8). The present sensor was successfully used to determine nitrite in real samples of mineral water, tap water, rain water, and seawater. The results were consistent with the data obtained by standard spectrophotometric method, showing potential of the proposed sensor for practical application.   相似文献   

14.
The simultaneous determination of three isomers of phenylenediamines (o, m, and p-phenylenediamine) and two isomers of dihydroxybenzenes (catechol and resorcinol) in hair dyes was performed by capillary zone electrophoresis coupled with amperometric detection (CZE–AD). The effects of working electrode potential, pH and concentration of running buffer, separation voltage, and injection time on CZE–AD were investigated. Under the optimum conditions the five analytes could be perfectly separated in 0.30 mol L−1 borate–0.40 mol L−1 phosphate buffer (pH 5.8) within 15 min. A 300 μm diameter platinum electrode had good responses at +0.85 V (versus SCE) for the five analytes. Their linear ranges were from 1.0 × 10−6 to 1.0 × 10−4 mol L−1 and the detection limits were as low as 10−7 mol L−1 (S/N = 3). This working electrode was successfully used to analyze eight kinds of hair dye sample with recoveries in the range 91.0–108.0% and RSDs less than 5.0%. These results demonstrated that capillary zone electrophoresis coupled with electrochemical detection using a platinum working electrode as detector was convenient, highly sensitive, highly repeatable and could be used in the rapid determination of practical samples. Figure Electropherograms obtained from 10 mg mL−1 hair dye sample solutions at a platinum working electrode under optimum CZE–AD conditions: (a) natural black (I), (b) golden: (1) p-phenylenediamine, (2) m-phenylenediamine, (3) o-phenylenediamine, (4) resorcinol, and (5) catechol  相似文献   

15.
The use of olaquindox (OLA) as an additive in animal feedstuffs has been prohibited in the European Union and many other countries. In this study, a highly sensitive and specific indirect competitive enzyme-linked immunosorbent assay (ELISA) for determination of OLA in animal feed samples was developed. OLA was activated by NN-carbonyldiimidazole and coupled with bovine serum albumin (BSA) and ovalbumin (OVA). It was found that the sensitivity and specificity of the two antisera were very similar, with the IC50 values of 16 ng mL−1 and 19 ng mL−1, respectively. Cross-reactivity was less than 35% for four structurally related compounds and no recognition of five other antibiotics was observed. The better antiserum I was selected for further experiments, for example testing stability, solvent effect, accuracy, and precision. The IC50 value for eight standard curves was in the range 12–18 ng mL−1 and the LOD at a signal-to-noise ratio of 3 (S/N = 3) was 0.31 ± 0.11 ng mL−1. The ELISA tolerated 5% methanol without significant influence on IC50 value. The recoveries of spiked OLA in five different animal feed types including auxin, pig complex feed, fish complex feed, broiler concentrated feed, and pig premix feed were in the range 88.3–119.0% and the intra-assay relative standard deviation (RSD) was within 4.7–33.5% (n = 3). The ELISA for unspiked feed samples was confirmed by high-performance liquid chromatography (HPLC), with a high correlation coefficient of 0.9862 (n = 5). The proposed ELISA could be a feasible quantitative/screening method for OLA analysis in feed samples with the properties of high sensitivity, specificity, simplicity of sample pretreatment, high sample throughput, and low expense. Figure Polyclonal antibody based ELISA for detection of olaquindox  相似文献   

16.
An efficient electrocatalytic biosensor for sulfite detection was developed by co-immobilizing sulfite oxidase and cytochrome c with polyaniline sulfonic acid in a layer-by-layer assembly. QCM, UV–Vis spectroscopy and cyclic voltammetry revealed increasing loading of electrochemically active protein with the formation of multilayers. The sensor operates reagentless at low working potential. A catalytic oxidation current was detected in the presence of sulfite at the modified gold electrode, polarized at +0.1 V (vs. Ag/AgCl 1 M KCl). The stability of the biosensor performance was characterized and optimized. A 17-bilayer electrode has a linear range between 1 and 60 μM sulfite with a sensitivity of 2.19 mA M−1 sulfite and a response time of 2 min. The electrode retained a stable response for 3 days with a serial reproducibility of 3.8% and lost 20% of sensitivity after 5 days of operation. It is possible to store the sensor in a dry state for more than 2 months. The multilayer electrode was used for determination of sulfite in unspiked and spiked samples of red and white wine. The recovery and the specificity of the signals were evaluated for each sample. Figure Schematic of the bioelectrocatalytic sulfite sensor: sulfite oxidase (green) oxidizes sulfite to sulfate and transfers electrons via heme b 5 to cyt c (red) and thence to the gold electrode  相似文献   

17.
The spatial distribution and concentration of impurities in metallurgical-grade silicon (MG-Si) samples (97–99% w/w Si) were investigated by use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The spatial resolution (120 μm) and low limits of detection (mg kg−1) for quality assurance of such materials were studied in detail. The volume-dependent precision and accuracy of non-matrix-matched calibration for quantification of minor elements, using NIST SRM 610 (silicate standard), indicates that LA-ICP-MS is well suited to rapid process control of such materials. Quantitative results from LA-ICP-MS were compared with previously reported literature data obtained by use of ICP-OES and rf-GD-OES. In particular, the distribution of element impurities and their relationship to their different segregation coefficients in silicon is demonstrated. Dedicated to Professor Klaus G. Heumann  相似文献   

18.
The application of near-infrared (NIR) dyes (λ em > 750 nm) to the analysis of biological samples shows much promise, because the long emission wavelengths of such dyes allow interferences from biomolecule matrices to be minimized. In this paper, a novel NIR dye, 5,5′-dicarboxy-1,1′-disulfobutyl-3,3,3′,3′-tetramethylindotricarbocyanine (DCDSTCY) has been developed for the spectrophotometric determination of total protein in serum. Under acidic conditions, the binding of DCDSTCY to proteins caused a new peak at 878 nm, the height of which was proportional to the concentration of protein. The linear range of the method was found to be 0.04–0.5 μg mL−1 for bovine serum albumin (BSA) and human serum albumin (HSA), and detection limits of 5 ng mL−1 were obtained for these substances. The maximum binding number of BSA with DCDSTCY was measured to be 133. The method proposed here has been applied to the quantitation of total protein in serum, and recoveries of 96.6–104% were achieved. Figure Near-infrared probe for protein determination  相似文献   

19.
Highly sensitive flow-injection chemiluminescence (CL) combined with molecularly imprinted solid-phase extraction (MISPE) has been used for determination of 2,4-dichlorophenol (2,4-DCP) in water samples. The molecularly imprinted polymer (MIP) for 2,4-DCP was prepared by non-covalent molecular imprinting methods, using 4-vinylpyridine (4-VP) and ethylene glycol dimethacrylate (EGDMA) as the monomer and cross-linker, respectively. 2,4-DCP could be selectively adsorbed by the MIP and the adsorbed 2,4-DCP was determined by its enhancing effect on the weak chemiluminescence reaction between potassium permanganate and luminol. The enhanced CL intensity was linear in the range from 1 × 10−7 to 2 × 10−5g mL−1. The LOD (S/N = 3) was 1.8 × 10−8g mL−1, and the relative standard deviation (RSD) was 3.0% (n = 11) for 1.4 × 10−6g mL−1. The proposed method had been successfully applied to the determination of 2,4-DCP in river water. Figure Effect of 4-VP content on the ultraviolet spectrum of 2,4-DCP in chloroform  相似文献   

20.
An analytical procedure has been introduced to enable study of the time profile of eprinomectin excretion in sheep faeces. Eprinomectin was extracted from sheep faeces with acetonitrile, the extract was cleaned by solid-phase extraction (SPE), and, after derivatization by reaction with N-methylimidazole, trifluoroacetic anhydride, and acetic acid, eprinomectin was analysed by high-performance liquid chromatography (HPLC) with fluorescence detection. The method has a low detection limit (1.0 ng g−1 of moist sheep faeces), a low quantification limit (2.5 ng g−1 of moist sheep faeces), good recovery (in the range 78.8 to 87.1%), and good reproducibility (RSD<10%). The method was used to study the time-profile of excretion of eprinomectin in sheep faeces after a single topical administration of 0.5 mg kg−1 b.w. of the drug. Because of its good recovery, precision, and sensitivity, the method has also proved applicable to further ecotoxicological studies of eprinomectin. Figure Autochthonous Slovenian dairy breed sheep – Istrian Pramenka  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号