首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents relative permittivities, excess permittivities, effective dipole moments, and excess Kirkwood correlation factors of binary mixtures of 1,4-butanediol with two primary pentanol isomers [1-pentanol (amyl alcohol) + 3-methyl-1-butanol (isoamyl alcohol)] from T = (298.15 to 318.15) K at p = 101.3 kPa over the entire composition range. Experimental permittivity values for polar–non-polar binary systems of (1,4-dioxane + amyl alcohol or isoamyl alcohol) were also obtained as a function of composition at the same range of temperatures. The experimental permittivity data were fitted using Redlich–Kister equation to evaluate the adjustable parameters and the standard errors. From the experimental data, the excess parameters were calculated. In this work, variations of effective dipole moment and correlation factor were investigated using Kirkwood−Frohlich equation. The experimental data of measurements were used in the analysis of the homo- and hetero interactions occurring in these binary solutions.  相似文献   

2.
Static dielectric constant measurements on binary mixtures of the homologous series of mono alkyl ethers of ethylene glycol with six different characteristic polar solvents i.e. ethyl alcohol, ethylene glycol, glycerol, water, dimethyl formamide and dimethyl sulphoxide over the entire concentration range were carried out using precision LCR meter and a four terminal liquid dielectric test fixture at 1?MHz and 25°C. The concentration dependent excess dielectric constant and Kirkwood correlation factor were determined for the confirmation of solvent–cosolvent heterogeneous molecular interactions. The values of stoichiometric ratio corresponding to maximum interactions between the mixtures constituents were also estimated from the concentration dependent values of ?E. It is observed that the behaviour of heterogeneous interactions significantly varies with the increase in molecular size of the homologous series and also with the change in the mixture constituents. Comparative dielectric parameters values of the studied binary mixtures were applied to recognize the dipolar orientation due to heterogeneous interactions of mono alkyl ethers with hydroxyl group(s) containing solvents and non-hydroxyl group containing solvents.  相似文献   

3.
PAL  Amalendu GABA  Rekha 《中国化学》2007,25(12):1781-1789
Excess molar volumes Vm^E and kinematic viscosities v have been measured as a function of composition for binary mixtures of propylene glycol monomethyl ether (1-methoxy-2-propanol), MeOCH2CH(OH)Me, propylene glycol monoethyl ether (1-ethoxy-2-propanol), EtOCH2CH(OH)Me, propylene glycol monopropyl ether (1-propoxy-2-propanol), PrOCH2CH(OH)Me, propylene glycol monobutyl ether (1-butoxy-2-propanol), BuOCH2CH(OH)Me, and propylene glycol tert-butyl ether (1-tert-butoxy-2-propanol), t-BuOCH2CH(OH)Me with 1-butanol, and 2-butanol, at 298.15 K and atmospheric pressure. The excess molar volumes are negative across the entire range of composition for all the systems with 1-butanol, and positive for the systems 2-butanol+ 1-methoxy-2-propanol, and +1-propoxy-2-propanol, negative for the systems 2-butanol+1-butoxy-2-propanol, and change sign for the systems 2-butanol+ 1-ethoxy-2-propanol, and + 1-tert-butoxy-2-propanol. From the experimental data, the deviation in dynamic viscosity η from ∑χiηi has been calculated. Both excess molar volumes and viscosity deviations have been correlated using a Redlich-Kister type polynomial equation by the method of least-squares for the estimation of the binary coefficients and the standard errors.  相似文献   

4.
Apparent dipole moments and relative permittivities of {x1-butanol + (1 – x) cyclohexane}, {x1-propanol + (1 – x)cyclohexane or (1 – x)benzene} and {xchloro- benzene + (1 – x)cyclohexane or (1 – x)benzene} were determined for the mole fraction range of 0.0003 < x < 0.1 at a temperature of T = 298.15 K and at a frequency of f = 100 kHz. The apparent dipole moments were calculated using Frohlich equation. The molar excess volumes for {x1-propanol + (1 – x)cyclohexane or (1 – x) benzene} and {xchlorobenzene + (1 – x)cyclohexane} were determined by a vibrating-tube densimeter at T = 298.15 K.  相似文献   

5.
Complex reflection coefficients for 2-ethoxyethanol–dimethylformamide (DMF), ethanol–DMF, and 1-propanol–DMF mixtures at several temperatures from 20 to 50° and the frequency range 10 MHz to 10 GHz were determined by time-domain spectroscopy in reflection mode. Fourier transforms and least-squares fitting were used to obtain complex permittivity, static dielectric constant, and relaxation time. The excess dielectric parameters, Kirkwood correlation factors, and thermodynamic properties for the binary mixtures were also determined. The static dielectric constant for the mixtures was fitted well with the modified Bruggeman model.  相似文献   

6.
Abstract

The ultrasonic velocity, u, viscosity, η, and density, ρ of dimethylsulphoxide (DMSO), 1-butanol, 1-hexanol, 1-octanol, and of their binary mixtures, where DMSO is common component, have been measured at 303.15 K. From the experimental data, excess isentropic compressibility, K E s, excess intermolecular free length, LE f, excess velocity, u E, excess acoustic impedance, Z E, excess viscosity, ηE, excess free energy of activation of viscous flow, G?E, and excess rheochore, [R E] have been calculated. The behaviours of excess functions with composition of the mixtures suggest that the structure-breaking effect dominates over the interaction effect between the component molecules. Furthermore, the experimental values of u and η were fitted by empirical equations stating their dependence on composition of the mixtures. The experimental values of u have been compared with those calculated by using Nomoto and Van Dael relations.  相似文献   

7.
The electrical permittivity of 1,4-dioxane and benzene solutions of some poly(oxyethylene) glycols up to the average molecular weight of 1590 were measured at 298.15 K. From the experimental data the limiting apparent specific polarization and partial molar polarization were calculated. The electrical dipole moment of the investigated solutes was estimated according to the Debye, Onsager, and Kirkwood theoretical approaches. The calculated dipole moments increase linearly with the square root of the number of monomeric units. The group dipole moment of the polar monomeric unit was calculated from the corresponding limiting partial molar volume, the refraction and polarization of the solute. The factor g, which takes into account the degree of flexibility of the chain, was estimated and found to be greater than 0.92, which means that the lower members of the poly(oxyethylene) glycols possess almost free rotation within the chain backbone of polymer.  相似文献   

8.
The densities of binary mixtures of formamide (FA) with 1-butanol, 2-butanol, 1,3-butanediol, and 1,4-butanediol, including those of the pure liquids, over the entire composition range were measured at temperatures (293.15, 298.15, 303.15, 308.15, 313.15 and 318.15) K and atmospheric pressure. From the experimental data, the excess molar volume, V m E, partial molar volumes, and , at infinite dilution, and excess partial molar volumes, and , at infinite dilution were calculated. The variation of these parameters with composition and temperature of the mixtures are discussed in terms of molecular interactions in these mixtures. The partial molar expansivities, and , at infinite dilution and excess partial molar expansivities, and , at infinite dilution were also calculated. The V m E values were found to be positive for all the mixtures at each temperature studied, except for FA + 1-butanol which exhibits a sigmoid trend wherein V m E values change sign from positive to negative as the concentration of FA in the mixture is increased. The V m E values for these mixtures follow the order: 1-butanol < 2-butanol < 1,3-butanediol < 1,4-butanediol. It is observed that the V m E values depend upon the number and position of hydroxyl groups in these alkanol molecules.  相似文献   

9.
The complex permittivity for chlorobenzene–alcohol binary mixtures have been determined over the frequency range of 10 MHz to 20 GHz, at 15, 25, 35, and 45°C, using the time-domain reflectometry (TDR) method for 11 concentrations of each chlorobenzene–alcohol system. The alcohols used were methanol, ethanol, and 1-propanol. The values of static dielectric constant, relaxation time, the corresponding excess properties, the Redlich–Kister coefficients up to the third order, the Kirkwood correlation factor, and thermodynamic parameters of the mixtures have been determined. The excess permittivity is found to be negative for chlorobenzene–methanol and chlorobenzene–ethanol, whereas it is positive in the 1-propanol rich region. The excess inverse relaxation time is negative for all the systems studied here. The Kirkwood effective correlation factor increases with an increasing in the molecular size of the alcohol, but decreases with increasing temperature.  相似文献   

10.
The purpose of this report is to calculate the orientation polarizability of benzaldehyde, benzoic acid and oxalic acid in polar and nonpolar solvents. The calculations are based on the knowledge of permanent dipole moment of the solutions. Other important physical quantities such as refractive index, density, specific volume, dielectric constant, molar polarization and molar refractivity are also calculated. Dipole moments of the solutions are calculated by using measured dielectric constants of the solutions. The dielectric constant measurements were made at 100 kHz. Relationships between the polarizability and concentration, specific volume, dielectric constant and dipole moment of the solutions are suggested.  相似文献   

11.
Densities and sound velocities of binary mixtures of cyclohexanone, 2-butanone, 1,4-dioxane and 1,2-dimethoxyethane were measured at 298.15 K and also the densities at 303.15 K. Excess volumes were determined from densities. Isentropic compressibilities were determined from densities and sound velocities, and excess thermal expansion factors were determined from excess volumes of two temperatures. Excess isothermal compressibilities and excess isochoric heat capacities were then estimated using excess isobaric heat capacities previously reported. Excess volumes and excess isentropic and isothermal compressibilities were negative except for cyclohexanone+1,4-dioxane system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
The conductances of LiCl in acetone-N,N-dimethylformamide (AC-DMF) and methylethylketone-N,N-dimethylformamide (MEK-DMF) binary mixtures have been measured at 25°C. The data were fitted to the 1978 Fuoss equation to obtain ion association constants KA and limiting molar conductances 0. The Bjerrum ion association theory modified by Fernandez-Prini and Prue was also used for evaluation of KA and a, the contact ion-pair distance. LiCl is more associated in AC-DMF mixtures than in the MEK-DMF system. Addition of DMF to either AC or MEK decreases KA and 0 as expected from the increase in the dielectric constant and the viscosity. The distance parameter a is almost constant and equal to 2.6 A in these mixed solvent systems. The Walden products pass through minima in both ketone-rich regions.  相似文献   

13.
Excess molar volumes and relative permittivities at a frequency of 30 kHz were determined precisely for the binary mixtures of 1-alkanols, CnH2n+1OH for n = 1 to 10, with cyclohexane or n-heptane to the mole fraction of 1-alkanol, x, to 0.1 at a temperature of 298.15 K. Apparent dipole moments, , of the 1-alkanols were calculated by using the Frohlich equation, and the limiting values, 0, were determined by extrapolating to infinite dilution. The solvent effect on 0 was very small. The value of 0 was largest in methanol and decreased with increasing n. It was found that the alkanols were isolated up to x 0.003. The threshold of molecular interaction beyond this critical mole fraction was ascertained by means of FT-IR spectra. The dipole moments of the 1-alkanols for n = 1–4 were evaluated by ab initio calculations. The average values of 0 for the rotational configurations calculated by assuming the Boltzmann distribution agreed excellently with the observed ones. The excess partial molar volumes of 1-alkanols determined at the infinite dilution depended on n as well as the solvent. These results are discussed from the viewpoint of the interactions between the solute and solvent molecules.  相似文献   

14.
An extensive collection of data has been used to study the effects of solvent, structure, and temperature on the ionization equilibrium constants of some substituted phenols and pyridinium ions in water–1,4-dioxane mixtures (0–70% weight fraction in dioxane) and temperatures ranging from 10 to 50°C. The effects of structure and solvent are explained using Hammett's equation and the Marshall–Quist model at all temperatures. An equation allowing an analysis of the three effects together on the pK values has been developed. The pK data under all experimental conditions fit this equation well, with standard errors of less than 0.3 pH units. Hammett's reaction constant for the ionization of phenols and pyridinium ions has been obtained for all the experimental conditions. The pK and Hammett's reaction constants for the different ionizations in water–1,4-dioxane mixtures correlate well with Kamlet and Taft's solvatochromic parameters * and , which measure the dipolarity/polarizability and hydrogen-bonding capacity of the solvent, respectively. These correlations explain more thoroughly the different contributions and origin of the effects of the solvent on the pK.  相似文献   

15.
Self-assembly in two binary mixtures based on three isomeric oligopyridines at the liquid/HOPG (highly oriented pyrolytic graphite) interface is presented. Despite their structural similarity the molecules display exclusive phase separation, which is attributed to the highly specific intermolecular hydrogen bonding interactions. Variation of the mole fractions in solution reveal strongly preferred adsorption of the major compound, which underlines the importance of self-recognition for self-assembly. Those findings at the molecular level can be applied to separation issues on a macroscopic scale, leading to a completely new concept of separation, which could have a strong impact on various chromatographic processes.  相似文献   

16.
The structure and vibrational frequencies of 1,4-benzodioxan in its S1(π, π*) electronic state have been calculated using the GAUSSIAN 03 and TURBOMOLE programs. The results have been compared to experimental data and also to the ground state. Structural data for the T1(π, π*) state have also been calculated. The theoretical frequencies agree very well with the experimental values for the S0 electronic ground state but are less accurate for the S1 excited state. Nonetheless, they provide valuable guidance for excited state calculations.  相似文献   

17.
A relatively simple expression is developed for predicting the solubility of an inert crystalline solute in binary alcohol + alcohol solvent mixtures based upon the Kretschmer-Wiebe association model. The predictive accuracy of the newlyderived expression is compared to equation(s) derived previously from Mobile Order theory using experimental anthracene solubilities in seven binary alcohol + 1-pentanol solvent mixtures at 25°C, which were measured as part of the present investigation. Computations show that both models accurately describe the solubility behavior of anthracene in the binary solvent systems studied. Average absolute deviations between observed and predicted values were 0.9% and 1.4% for the Kretschmer-Wiebe and Mobile Order predictive equations, respectively.  相似文献   

18.
《Analytical letters》2012,45(10):2019-2033
ABSTRACT

The use of UV spectrophotometry (first-derivative/zero-crossing and zero-order spectra/multivariate calibration) is reported for the analysis of two miotic agents in ophthalmic solutions. The resolution of these mixtures has been accomplished without prior separation or derivatisation by using: 1) first-derivative measurements at two appropriate zero-crossing points: λ1 = 222 nm, where the absorption corresponding to excipients is negligible, and λ2 = 307 nm, where the contribution of pilocarpine and excipients to the overall absorption is negligible, and 2) partial least squares (PLS-1) regression analysis of zero-order spectral data. Although the components show an important degree of spectral overlap, they have been simultaneously determined with high accuracy, and with no interference from ophthalmic solution excipients.  相似文献   

19.
The equilibrium solubility and preferential solvation of triclocarban in {1,4-dioxane (1) + water (2)} mixtures at 298.15 K was reported. Mole fraction solubility varies continuously from 2.85 × 10–9 in neat water to 2.39 × 10–3 in neat 1,4-dioxane. Solubility behaviour was adequately correlated by means of the Jouyban-Acree model. Based on the inverse Kirkwood-Buff integrals, preferential solvation parameters were calculated. Triclocarban is preferentially solvated by water in water-rich mixtures (0.00 < x1 < 0.18) and also in 1,4-dioxane-rich mixtures (0.78 < x1 < 1.00) but preferentially solvated by 1,4-dioxane in mixtures with similar solvent compositions.  相似文献   

20.
Summary The program DOCK [1,2] has been used successfully to identify molecules which will bind to a specified receptor [3]. The original method ranks molecules based on their shape complementarity to the receptor site and relies on the chemist to bring the appropriate electrostatic or hydrogen bond properties into the molecular skeletons obtained in the search. This is useful when screening a small database of compounds, where it is not likely that molecules with both the correct shape and electrostatic properties will be found. As large databases are more likely to have redundant molecular shapes with a variety of functionality (e.g., members of a congeneric series), it would be useful to have a method which identifies molecules with both the correct shape and functionality. To this end we have modified the DOCK 1.0 method to target user-specified atom types to selected positions in the receptor site. The target sites can be chosen based on structural evidence, calculation or inspection. Targeted-DOCK improves the ability of the DOCK method to find the crystallographically determined binding mode of a ligand. Additionally, targeted-DOCK searches a database of small molecules at 100–1000 times the rate of DOCK 1.0, allowing more molecules to be screened and more sophisticated scoring schemes to be employed. Targeted-DOCK has been used successfully in the design of a novel non-peptide inhibitor of HIV-1 protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号