首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photodissociation dynamics of vinyl bromide and perfluorovinyl bromide have been investigated at 234 nm using a photofragment ion imaging technique coupled with a state-selective [2+1] resonance-enhanced multiphoton ionization scheme. The nascent Br atoms stem from the primary C-Br bond dissociation leading to the formation of C2H3(X) and Br(2Pj;j=1/2,3/2). The obtained translational energy distributions have been well fitted by a single Boltzmann and three Gaussian functions. Boltzmann component has not been observed in the perfluorovinyl bromide. The repulsive 3A'(n,sigma *) state has been considered as the origin of the highest Gaussian components. Middle translational energy components with Gaussian shapes are produced from the 1A"(pi,sigma*) and/or 3A"(pi,sigma*) which are very close in energy. Low-energy Gaussian components are produced via predissociation from the 3A'(pi,pi*) state. The assignments have also been supported by the recoil anisotropy corresponding to the individual components. It is suggested that intersystem crossing from the triplet states to the ground state has been attributed to the Boltzmann component and the fluorination reduces the probability of this electronic relaxation process.  相似文献   

2.
Photoexcitation of 2-bromo-2-nitropropane (BNP) at 248 and 193 nm generates OH, Br, and NO(2) among other products. The OH fragment is detected by laser-induced fluorescence spectroscopy, and its translational and internal state distributions (vibration, rotation, spin-orbit, and Λ-doubling components) are probed. At both 248 and 193 nm, the OH fragment is produced translationally hot with the energy of 10.8 and 17.2 kcal∕mol, respectively. It is produced vibrationally cold (v" = 0) at 248 nm, and excited (v" = 1) at 193 nm with a vibrational temperature of 1870 ± 150 K. It is also generated with rotational excitation, rotational populations of OH(v" = 0) being characterized by a temperature of 550 ± 50 and 925 ± 100 K at 248 and 193 nm excitation of BNP, respectively. The spin-orbit components of OH(X(2)Π) are not in equilibrium on excitation at 193 nm, but the Λ-doublets are almost in equilibrium, implying no preference for its π lobe with respect to the plane of rotation. The NO(2) product is produced electronically excited, as detected by measuring UV-visible fluorescence, at 193 nm and mostly in the ground electronic state at 248 nm. The Br product is detected employing resonance-enhanced multiphoton ionization with time-of-flight mass spectrometer for better understanding of the dynamics of dissociation. The forward convolution analysis of the experimental data has provided translational energy distributions and anisotropy parameters for both Br((2)P(3∕2)) and Br?((2)P(1∕2)). The average translational energies for the Br and Br? channels are 5.0 ± 1.0 and 6.0 ± 1.5 kcal∕mol. No recoil anisotropies were observed for these products. Most plausible mechanisms of OH and Br formation are discussed based on both the experimental and the theoretical results. Results suggest that the electronically excited BNP molecules at 248 and 234 nm relax to the ground state, and subsequently dissociate to produce OH and Br through different channels. The mechanism of OH formation from BNP on excitation at 193 nm is also discussed.  相似文献   

3.
Resonance-enhanced photoionization has been used to follow S(3P2) in the photodissociation of CS2 at 193 nm. The contributions from initial photodissociation and from S(1D) relaxation have been resolved and give a (15±5)% yield of S(1D). The possibility of secondary production of S(3Pj) by CS photodissociation with a second 193 nm photon is discussed. Although this might raise the S(1D) yield to (26±8)%, production of S(3PJ) is still the dominant photodissociation channel.  相似文献   

4.
The photodissociation of H(2)Te through excitation in the first absorption band is investigated by means of multireference spin-orbit configuration interaction (CI) calculations. Bending potentials for low-lying electronic states of H(2)Te are obtained in C(2v) symmetry for Te-H distances fixed at the ground state equilibrium value of 3.14a(0), as well as for the minimum energy path constrained to R(1)=R(2). Asymmetric cuts of potential energy surfaces for excited states (at R(1)=3.14a(0) and theta;=90.3 degrees ) are obtained for the first time. It is shown that vibrational structure in the 380-400 nm region of the long wavelength absorption tail is due to transitions to 3A('), which has a shallow minimum at large HTe-H separations. Transitions to this state are polarized in the molecular plane, and this state converges to the excited TeH((2)Pi(1/2))+H((2)S) limit. These theoretical data are in accord with the selectivity toward TeH((2)Pi(1/2)) relative to TeH((2)Pi(3/2)) that has been found experimentally for 355 nm H(2)Te photodissociation. The calculated 3A(')<--XA(') transition dipole moment increases rapidly with HTe-H distance; this explains the observation of 3A(') vibrational structure for low vibrational levels, despite unfavorable Franck-Condon factors. According to the calculated vertical energies and transition moment data, the maximum in the first absorption band at approximately 245 nm is caused by excitation to 4A("), which has predominantly 2(1)A(") ((1)B(1) in C(2v) symmetry) character.  相似文献   

5.
The photodissociation dynamics of fumaryl chloride (ClCO-CH═CH-COCl) has been studied in a supersonic molecular beam around 235 nm using resonance enhanced multiphoton ionization (REMPI) time-of-flight (TOF) technique by detecting the nascent state of the primary chlorine atom. A single laser has been used for excitation of fumaryl chloride and the REMPI detection of chlorine atoms in their spin-orbit states, Cl ((2)P(3/2)) and Cl* ((2)P(1/2)). We have determined the translational energy distribution, the recoil anisotropy parameter, β, and the spin-orbit branching ratio for chlorine atom elimination channels. To obtain these, measured polarization-dependent and state-specific TOF profiles are converted into kinetic energy distributions, using a least-squares fitting method, taking into account the fragment recoil anisotropies, β(i). The TOF profiles for both Cl and Cl* are found to be independent of laser polarization; i.e., β is well characterized by a value of 0.0, within the experimental uncertainties. Two components, namely, the fast and the slow, are observed in the translational energy distribution, P(E(T)), of Cl and Cl* atoms, and assigned to be formed from different potential energy surfaces. The average translational energies for the fast components of the Cl and Cl* channels are 14.9 ± 1.6 and 16.8 ± 1.6 kcal/mol, respectively. Similarly, for the slow components, the average translational energies of the Cl and Cl* channels are 3.4 ± 0.8 and 3.1 ± 0.8 kcal/mol, respectively. The energy partitioning into the translational modes is interpreted with the help of various models, such as impulsive and statistical models. Apart from the chlorine atom elimination channel, molecular hydrogen chloride (HCl) elimination is also observed in the photodissociation process. The HCl product has been detected, using a REMPI scheme in the region of 236-237 nm. The observation of the molecular HCl in the dissociation process highlights the importance of the relaxation process, in which the initially excited parent molecule relaxes to the ground state from where the molecular (HCl) elimination takes place.  相似文献   

6.
We present velocity map images of the NO, O((3)P(J)) and O((1)S(0)) photofragments from NO(2) excited in the range 7.6 to 9.0 eV. The molecule was initially pumped with a visible photon between 2.82-2.95 eV (440-420 nm), below the first dissociation threshold. A second ultraviolet laser with photon energies between 4.77 and 6.05 eV (260-205 nm) was used to pump high-lying excited states of neutral NO(2) and/or probe neutral photoproducts. Analysis of the kinetic energy release spectra revealed that the NO photofragments were predominantly formed in their ground electronic state with little kinetic energy. The O((3)P(J)) and O((1)S(0)) kinetic energy distributions were also dominated by kinetically 'cold' fragments. We discuss the possible excitation schemes and conclude that the unstable photoexcited states probed in the experiment were Rydberg states coupled to dissociative valence states. We compare our results with recent time-resolved studies using similar excitation and probe photon energies.  相似文献   

7.
An experimental two-color photoionization dynamics study of laser-excited Br2 molecules is presented, combining pulsed visible laser excitation and tunable vacuum ultraviolet (VUV) synchrotron radiation with photoelectron imaging. The X 1Sigmag + -B 3Pi0+u transition in Br2 is excited at 527 nm corresponding predominantly to excitation of the v' = 28 vibrational level in the B 3Pi0+u state. Tunable VUV undulator radiation in the energy range of 8.40-10.15 eV is subsequently used to ionize the excited molecules to the X 2Pi32,12 state of the ion, and the ionic ground state is probed by photoelectron imaging. Similar experiments are performed using single-photon synchrotron ionization in the photon energy range of 10.75-12.50 eV without any laser excitation. Photoelectron kinetic energy distributions are extracted from the photoelectron images. In the case of two-color photoionization using resonant excitation of the intermediate B 3Pi0+u state, a broad distribution of photoelectron kinetic energies is observed, and in some cases even a bimodal distribution, which depends on the VUV photon energy. In contrast, for single-photon ionization, a single nearly Gaussian-shaped distribution is observed, which shifts to higher energy with photon energy. Simulated spectra based on Franck-Condon factors for the transitions Br2(X 1Sigmag+, v" = 0)-Br2 +(X 2Pi12,32, v+) and Br2(B 3Pi0+u, v' = 28)-Br2 +(X 2Pi12,32, v+) are generated. Comparison of these calculated spectra with the measured images suggests that the differences in the kinetic energy distributions for the two ionization processes reflect the different extensions of the vibrational wave functions in the v" = 0 electronic ground state (X 1Sigmag+) versus the electronically and vibrationally excited state (B 3Pi0+u, v' = 28).  相似文献   

8.
The photodissociation of CS(2) has been investigated using velocity-map ion imaging of the S((1)D(2)) atomic photofragments following excitation at 193 nm and at longer wavelengths close to the S((1)D(2)) channel threshold. The experiments probe regions both above and below the energetic barrier to linearity on the (1)Σ(u) (+)((1)B(2)) potential energy surface. The imaging data in both regions indicate that the electronic angular momentum of the S((1)D(2)) atom products is unpolarized, but also reveal different dissociation dynamics in the two regions. Excitation above the barrier to linearity yields an inverted CS((1)Σ(+)) vibrational population distribution, whereas the long-wavelength state-to-state results following excitation below the barrier reveal CS((1)Σ(+))(v, J) coproduct state distributions which are consistent with a statistical partitioning of the energy. Below the barrier, photofragment excitation spectra point to an enhancement of the singlet channel for K = 1, relative to K = 0, where K is the projection of the angular momentum along the principal axis, in agreement with previous work. However, the CS cofragment product state distributions are found to be insensitive to K. It is proposed that dissociation below the barrier to linearity occurs primarily on a surface with a significant potential energy well and without an exit channel barrier, such as that for the ground electronic state. However, oscillatory structure is also observed in the kinetic energy release distributions, which is shown to be consistent with a mapping of parent molecule bending motion. This could indicate the operation of competing direct and indirect dissociation mechanisms below the barrier to linearity.  相似文献   

9.
The sequential photodissociation dynamics of (HI)2 is studied by means of a nonadiabatic wave packet treatment starting from the I*-HI complex. The model reproduces the main experimental findings for photolysis with 266 nm radiation. The results confirm that some of the H atoms dissociated from the I*-HI complex deactivate the I* atom through a HI* intracluster collision which induces an I*-->I electronically nonadiabatic transition. As a consequence, these H fragments become very fast by acquiring nearly all the I* excitation energy, equivalent to the I*I spin-orbit splitting. A most interesting result is the high production of bound I2 fragments in highly excited rovibrational states in the photolysis, indicating that the H dissociation is mainly direct.  相似文献   

10.
The photodissociation of gas-phase I(2)Br(-) was investigated using fast beam photofragment translational spectroscopy. Anions were photodissociated from 300 to 270 nm (4.13-4.59 eV) and the recoiling photofragments were detected in coincidence by a time- and position-sensitive detector. Both two- and three-body channels were observed throughout the energy range probed. Analysis of the two-body dissociation showed evidence for four distinct channels: Br(-) + I(2), I(-) + IBr, Br+I(2) (-), and I + IBr(-). In three-body dissociation, Br((2)P(3∕2)) + I((2)P(3∕2)) + I(-) and Br(-) + I((2)P(3∕2)) + I((2)P(3∕2)) were produced primarily from a concerted decay mechanism. A sequential decay mechanism was also observed and attributed to Br(-)((1)S)+I(2)(B(3)Π(0u) (+)) followed by predissociation of I(2)(B).  相似文献   

11.
The photodissociation dynamics of CH(2)Br(2) was investigated near 234 and 267 nm. A two-dimensional photofragment ion velocity imaging technique coupled with a [2+1] resonance-enhanced multiphoton (REMPI) ionization scheme was utilized to obtain the angular and translational energy distributions of the nascent Br ((2)P(3/2)) and Br* ((2)P(1/2)) atoms. The obtained translational energy distributions of Br and Br* are found consist of two components which should be come from the radical channel and secondary dissociation process, respectively. It is suggested that the symmetry reduction from C(2v) to C(s) during photodissociation invokes a non-adiabatic coupling between the 2B(1) and A(1) states. Consequently, the higher internal energy distribution of Br channel than Br* formation channel and the broader translational energy distribution of the former are presumed correlate with a variety of vibrational excitation disposal at the crossing point resulting from the larger non-adiabatic crossing from 2B(1) to A(1) state than the reverse crossing. Moreover, the measured anisotropy parameter beta indicate that fragments recoil along the Br-Br direction mostly in the photodissociation.  相似文献   

12.
13.
The downfield shift and broadening of the isobutanol OH group signal with increasing 2,6-lutidine concentration was observed and explained by N…HO interaction. In the case of tertbutyl alcohol on increasing the 2,6-lutidine concentration the signal of the OH group shifted upfield without broadening (an effect of breaking of alcohol-alcohol hydrogen bonds). In three component systems, with a nonpolar solvent, where alcohol-alcohol interactions were eliminated (xa = 0.002) and with excess 2,6-lutidine both alcohols interacted with 2,6-lutidine and so, from the dependence of the OH group signal of isobutyl and tertbutyl alcohols on concentration and temperature the thermodynamic parameters were obtained: ΔH (4.6 and 3.4 kcal mole−1), ΔS (14.0 and 12.4 e.u.) respectively.  相似文献   

14.
The TOF spectra of photofragment hydrogen atoms from the 193 nm photodissociation of amorphous ice at 90-140 K have been measured. The spectra consist of both a fast and a slow components that are characterized by average translational energies of 2k(B)T(trans)=0.39+/-0.04 eV (2300+/-200 K) and 0.02 eV (120+/-20 K), respectively. The incident laser power dependency of the hydrogen atom production suggests one-photon process. The electronic excitation energy of a branched cluster, (H(2)O)(6+1), has been theoretically calculated, where (H(2)O)(6+1) is a (H(2)O)(6) cyclic cluster attached by a water molecule with the hydrogen bond. The photoabsorption of this branched cluster is expected to appear at around 200 nm. The source of the hydrogen atoms is attributed to the photodissociation of the ice surface that is attached by water molecules with the hydrogen bond. Atmospheric implications are estimated for the photodissociation of the ice particles (Noctilucent clouds) at 190-230 nm in the region between 80 and 85 km altitude.  相似文献   

15.
The effect of the excitation energy on the nonadiabatic photodissociation dynamics of (HI)2 is explored in this work. A wave packet model is applied that simulates the photodissociation process starting from the I*-HI complex left behind after dissociation of the first HI moiety within (HI)2. The probability and product fragment state distributions of the different photodissociation pathways are analyzed in a wide range of excitation energies of the I*-HI absorption spectrum. It is found that the probability of electronically nonadiabatic transitions increases substantially (by a factor larger than two) in the range of excitation energies analyzed. This increase is due to an enhancement of the intensity of the spin-rotation coupling responsible for the nonadiabatic transitions with increasing excitation energy. A remarkably high fraction of bound, highly excited I2 photoproducts, slowly decreasing as the excitation energy increases, is also found over the range of energies studied. The I2 product state distributions show manifestations of rotational interference effects and also of rotational cooling in the case of the I2 state distributions produced upon nonadiabatic transitions. Such effects become more pronounced with increasing energy. Experimental implications of these findings are discussed.  相似文献   

16.
Elimination pathways of the Br(2)(+) and Br(+) ionic fragments in photodissociation of 1,2- and 1,1-dibromoethylenes (C(2)H(2)Br(2)) at 233 nm are investigated using time-of-flight mass spectrometer equipped with velocity ion imaging. The Br(2)(+) fragments are verified not to stem from ionization of neutral Br(2), that is a dissociation channel of dibromoethylenes reported previously. Instead, they are produced from dissociative ionization of dibromoethylene isomers. That is, C(2)H(2)Br(2) is first ionized by absorbing two photons, followed by the dissociation scheme, C(2)H(2)Br(2)(+) + hv→Br(2)(+) + C(2)H(2). 1,2-C(2)H(2)Br(2) gives rise to a bright Br(2)(+) image with anisotropy parameter of -0.5 ± 0.1; the fragment may recoil at an angle of ~66° with respect to the C=C bond axis. However, this channel is relatively slow in 1,1-C(2)H(2)Br(2) such that a weak Br(2)(+) image is acquired with anisotropy parameter equal to zero, indicative of an isotropic recoil fragment distribution. It is more complicated to understand the formation mechanisms of Br(+). Three routes are proposed for dissociation of 1,2-C(2)H(2)Br(2), including (a) ionization of Br that is eliminated from C(2)H(2)Br(2) by absorbing one photon, (b) dissociation from C(2)H(2)Br(2)(+) by absorbing two more photons, and (c) dissociation of Br(2)(+). Each pathway requires four photons to release one Br(+), in contrast to the Br(2)(+) formation that involves a three-photon process. As for 1,1-C(2)H(2)Br(2), the first two pathways are the same, but the third one is too weak to be detected.  相似文献   

17.
《Chemical physics letters》2002,350(5-6):656-663
We have obtained transient resonance Raman spectra of the [CH2CHCH2]+ (allyl cation) produced following C-band excitation of cyclopropyl bromide. The experimental resonance Raman spectrum display an overtone progression in the nominal [CCC]+ stretch mode and its combination bands with the CH/CH2 rocking modes. Density functional theory computations were performed to estimate the vibrational frequencies for the allyl cation, the allyl radical, the cyclopropyl radical, the cyclopropyl bromide molecule and the gauche-allyl bromide molecule and compared to the experimental vibrational frequencies. This comparison indicates that the allyl cation can be formed as a product of cyclopropyl bromide photodissociation in acetonitrile solution.  相似文献   

18.
The photodissociation of jet-cooled DCl molecules subsequent to excitation in the long-wavelength tail of the first UV absorption band (A1Π1←X1Σ+) has been investigated at five wavelengths in the range 200–220 nm. Ground state Cl(2P3/2) and spin–orbit excited Cl*(2P1/2) photofragments were monitored using (2+1) resonance enhanced multiphoton ionization in a time-of-flight mass spectrometer. The product branching fractions are reported and compared with previous experimental results and high-level quantum mechanical calculations for HCl and DCl. A significant H/D isotope effect in the branching fractions is found at all the studied wavelengths, in quantitative agreement with recent theoretical predictions.  相似文献   

19.
A set of three heparin-derived disaccharide deprotonated ions was isolated in a linear ion trap and subjected to UV laser irradiation in the 220–290 nm wavelength range. The dissociation yields of the deprotonated molecular ions were recorded as a function of laser wavelength. They revealed maximum absorption at 220 nm for the nonsulfated disaccharide, but centered at 240 nm for the sulfated species. The comparison of the fragmentation patterns between ultraviolet photodissociation (UVPD) at 240 nm and CID modes showed roughly the same distribution of fragment ions resulting from glycosidic bond cleavages. Interestingly, UVPD favored additional cross ring cleavages of A and X type ion series enabling easier sulfate group location. It also reduced small neutral losses (H2O).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号