首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Infrared (IR) vibrational spectroscopy of acetic acid (A) neutral and ionic monomers and clusters, employing vacuum ultraviolet (VUV), 10.5 eV single photon ionization of supersonically expanded and cooled acetic acid samples, is presented and discussed. Molecular and cluster species are identified by time of flight mass spectroscopy: the major mass features observed are A(n)H(+) (n=1-9), ACOOH(+) (VUV ionization) without IR radiation present, and A(+) with both IR and VUV radiation present. The intense feature ACOOH(+) arises from the cleavage of (A)(2) at the beta-CC bond to generate ACOOH(+)+CH(3) following ionization. The vibrational spectrum of monomeric acetic acid (2500-7500 cm(-1)) is measured by nonresonant ionization detected infrared (NRID-IR) spectroscopy. The fundamentals and overtones of the CH and OH stretches and some combination bands are identified in the spectrum. Mass selected IR spectra of neutral and cationic acetic acid clusters are measured in the 2500-3800 cm(-1) range employing nonresonant ionization dip-IR and IR photodissociation (IRPD) spectroscopies, respectively. Characteristic bands observed at approximately 2500-2900 cm(-1) for the cyclic ring dimer are identified and tentatively assigned. For large neutral acetic acid clusters A(n)(n>2), spectra display only hydrogen bonded OH stretch features, while the CH modes (2500-2900 cm(-1)) do not change with cluster size n. The IRPD spectra of protonated (cationic) acetic acid clusters A(n)H(+) (n=1-7) exhibit a blueshift of the free OH stretch with increasing n. These bands finally disappear for n> or =6, and one broad and weak band due to hydrogen bonded OH stretch vibrations at approximately 3350 cm(-1) is detected. These results indicate that at least one OH group is not involved in the hydrogen bonding network for the smaller (n< or =5) A(n)H(+) species. The disappearance of the free OH stretch feature at n> or =6 suggests that closed cyclic structures form for A(n)H(+) for the larger clusters (n> or =6).  相似文献   

2.
A high sensitivity spectroscopy is employed to detect vibrational antiitions of ethanol neutrals and ions in a supersonic expansion. The infrared (IR) features located at 3682 and 3667 cm(-1) can be assigned to the OH stretch for the two neutral C(2)H(5)OH conformers, anti and gauche, respectively. Their overtone energies located at 7179 (anti) and 7141 (gauche) cm(-1) are also identified. The OH fundamental stretch for ethanol ions is redshifted around 210 cm(-1), while the CH stretch modes are unchanged for neutral and ionic C(2)H(5)OH at around 2900-3000 cm(-1). The charge on the ethanol ion is apparently localized on the oxygen atom. IR induced photodissociation spectroscopy is applied to the study of neutral and protonated ethanol clusters. Neutral and protonated ethanol cluster vibrations are observed. The CH modes are not perturbed by the clustering process. Neutral clusters display only hydrogen bonded OH features, while the protonated ionic clusters display both hydrogen bonded and non-hydrogen-bonded features. These spectroscopic results are analyzed to obtain qualitative structural information on neutral and ionic ethanol clusters.  相似文献   

3.
We present new observations of the infrared (IR) spectrum of neutral methanol and neutral and protonated methanol clusters employing IR plus vacuum ultraviolet (vuv) spectroscopic techniques. The tunable IR light covers the energy ranges of 2500-4500 cm(-1) and 5000-7500 cm(-1). The CH and OH fundamental stretch modes, the OH overtone mode, and combination bands are identified in the vibrational spectrum of supersonic expansion cooled methanol (2500-7500 cm(-1)). Cluster size selected IR plus vuv nonresonant infrared ion-dip infrared spectra of neutral methanol clusters, (CH(3)OH)(n) (n=2,[ellipsis (horizontal)],8), demonstrate that the methanol dimer has free and bonded OH stretch features, while clusters larger than the dimer display only hydrogen bonded OH stretch features. CH stretch mode spectra do not change with cluster size. These results suggest that all clusters larger than the dimer have a cyclic structure with OH groups involved in hydrogen bonding. CH groups are apparently not part of this cyclic binding network. Studies of protonated methanol cluster ions (CH(3)OH)(n)H(+) n=1,[ellipsis (horizontal)],7 are performed by size selected vuv plus IR photodissociation spectroscopy in the OH and CH stretch regions. Energies of the free and hydrogen bonded OH stretches exhibit blueshifts with increasing n, and these two modes converge to approximately 3670 and 3400 cm(-1) at cluster size n=7, respectively.  相似文献   

4.
Small methanol clusters are formed by expanding a mixture of methanol vapor seeded in helium and are detected using vacuum UV (vuv) (118 nm) single-photon ionization/linear time-of-flight mass spectrometer (TOFMS). Protonated cluster ions, (CH3OH)(n-1)H+ (n=2-8), formed through intracluster ion-molecule reactions following ionization, essentially correlate to the neutral clusters, (CH3OH)n, in the present study using 118 nm light as the ionization source. Both experimental and Born-Haber calculational results clarify that not enough excess energy is released into protonated cluster ions to initiate further fragmentation in the time scale appropriate for linear TOFMS. Size-specific spectra for (CH3OH)n (n=4 to 8) clusters in the OH stretch fundamental region are recorded by IR+vuv (118 nm) nonresonant ion-dip spectroscopy through the detection chain of IR multiphoton predissociation and subsequent vuv single-photon ionization. The general structures and gross features of these cluster spectra are consistent with previous theoretical calculations. The lowest-energy peak contributed to each cluster spectrum is redshifted with increasing cluster size from n=4 to 8, and limits near approximately 3220 cm(-1) in the heptamer and octamer. Moreover, IR+vuv nonresonant ionization detected spectroscopy is employed to study the OH stretch first overtone of the methanol monomer. The rotational temperature of the clusters is estimated to be at least 50 K based on the simulation of the monomer rotational envelope under clustering conditions.  相似文献   

5.
Excitation and decay processes of neutral and ionized ArN clusters are analysed using fluorescence spectroscopy with synchrotron radiation. The fluorescence yield of ionized ArN clusters is resonantly enhanced after excitation from states related to the atomic 3s levels.  相似文献   

6.
The Laser-induced fluorescence spectra of ionic cluster C6F6+·Xn, where X = He, Ne, or Ar, are obtained by multiphoton ionization of C6F6 seeded in an inert gas expansion. Spectral information concerning the red-shifts and linewidths of the ionic cluster are reported and observations relevant to their formation mechanisms are offered.  相似文献   

7.
Accelerated technological progress and increased complexity of interrogated matrices imposes a demand for fast, powerful, and resolutive analysis techniques. Gas chromatography has been for a long time a ‘go‐to’ technique for the analysis of mixtures of volatile and semi‐volatile compounds. Coupling of the several dimensions of gas chromatography separation has allowed to access a realm of improved separations in the terms of increased separation power and detection sensitivity. Especially comprehensive separations offer an insight into detailed sample composition for complex samples. Combining these advanced separation techniques with an informative detection system such as vacuum ultraviolet spectroscopy is therefore of great interest. Almost all molecules absorb the vacuum ultraviolet radiation and have distinct spectral features with compound classes exhibiting spectral signature similarities. Spectral information can be ‘filtered’ to extract the response in the most informative spectral ranges. Developed algorithms allow spectral mixture estimation of coeluting species. Vacuum ultraviolet detector follows Beer–Lambert law, with the possibility of calibrationless quantitation. The purpose of this article is to provide an overview of the features and specificities of gas chromatography–vacuum ultraviolet spectroscopy coupling which has gained interest since the recent introduction of a commercial vacuum ultraviolet detector. Potentials and limitations, relevant theoretical considerations, recent advances and applications are explored.  相似文献   

8.
The electronic and infrared spectra of 2-fluoropyridine-methanol clusters were observed in a supersonic free jet. The structure of hydrogen-bonded clusters of 2-fluoropyridine with methanol was studied on the basis of the molecular orbital calculations. The IR spectra of 2-fluoropyridine-(CH3OH)n(n = 1-3) clusters were observed with a fluorescence-detected infrared depletion (FDIR) technique in the OH and CH stretching vibrational regions. The structures of the clusters are similar to those observed for 2-fluoropyridine-(H2O)n (n = 1-3) clusters. The existence of weak hydrogen bond interaction through aromatic hydrogen was observed in the IR spectra. The theoretical calculation also supports the result. The vibrational frequencies of CH bonds in CH3 group are affected by hydrogen bond formation although these bonds do not directly relate to the hydrogen bond interaction. The B3LYP/6-311 ++G(d,p) calculations reproduce well the vibrational frequency of the hydrogen-bonded OH stretching vibrations. However, the calculated frequency of CH stretching vibration could not reproduce the IR spectra because of anharmonic interaction with closely lying overtone or combination bands for nu3 and nu9 vibrations. The vibrational shift of nu2 vibration is reproduced well with molecular orbital calculations. The calculation also shows that the frequency shift of nu2 vibration is closely related to the CH bond length at the trans position against the OH bond in hydrogen-bonded methanol.  相似文献   

9.
The vibrational spectra of Ag(3) and Ag(4) are recorded in the far-infrared between 100 and 220 cm(-1) using multiple photon dissociation spectroscopy of their complexes with Ar atoms. For Ag(3)-Ar two IR active bands are found at 113 and 183 cm(-1), for Ag(4)-Ar one band at 163 cm(-1) and very weak IR activity at 193 cm(-1) are observed. This, together with recent theoretical studies, allows for a reassignment of the controversial vibrational data reported earlier for the bare Ag(3) cluster. The influence of the number of Ar atoms in the complexes on the frequency of the IR active modes is found to be minor. However, the low-frequency IR-active band of Ag(3) shifts with increasing Ar coverage from 113 cm(-1) for Ag(3)-Ar to about 120 cm(-1) for Ag(3)-Ar(4), the value known for Ag(3) embedded in rare gas matrices.  相似文献   

10.
Studies of the electronic and geometric structure of free clusters are presented to highlight the application of core-level spectroscopy using synchrotron radiation to cluster physics. The study of electronic structure deals with the excitation of the C 1s electron to the Rydberg states of the molecule in CH4 clusters and demonstrates the gradual evolution of the surface and bulk-specific spectral features with cluster size. A second study investigates the K-edge excitations in Ne clusters and is concerned with extracting structural information from the X-rays Absorption Near-Edge Structure (XANES).  相似文献   

11.
The first gas-phase vibrational spectra are presented for several anionic iron carbonyl clusters, ranging in size from Fe(CO)4- to Fe5(CO)14- in the CO-stretching region (1600-2100 cm-1). The experimental spectra provide some immediate structural information about the clusters in the form of low-wavenumber (1750-1850 cm-1) bands marking the presence of bridging carbonyl ligands (mu2-COs). Supporting DFT calculations are presented for the smaller clusters (<3 Fe atoms) and give good agreement with the experimental data, allowing structural assignments for these cases. The Fe2(CO)7- spectrum suggests a structure lacking bridging carbonyl ligands, in agreement with the DFT results. For the case of Fe2(CO)8-, there are two possible structures based on the calculations, both with and without bridging carbonyls. The presence of a low-frequency band ( approximately 1770 cm-1) in the experimental spectrum conclusively demonstrates the existence of the bridged form. The ramifications of these data for metal-metal bonding in the clusters are also considered.  相似文献   

12.
We report experimental infrared spectra of neutral metal clusters in the gas phase. Multiple photon dissociation of the argon complexes of niobium clusters is used to obtain vibrational spectra in the 80-400 cm(-1) region. The observed spectra for Nb(9)Ar(n) (n=1-4) are different for different values of n. This is explained by the presence of two isomers of Nb(9) that have different affinities towards Ar and the isomer specific infrared spectra are obtained. The structures of the isomers are determined by comparing the observed spectra with the outcome of density-functional theory calculations.  相似文献   

13.
A newly developed photoion-photoelectron Vacuum-UV coincidence spectrometer has been coupled to a supersonic metal atom cluster beam source and has been used to investigate the electronic structure of isolated mercury clusters in the size range from 1 to 110 at several selected discrete excitation energies between 11.3 and 7.1 eV. Excitation of the van der Waals cluster Hg10 at the center of the strongD 3/2-autoionization line at 10.7 eV yields a photoelectron kinetic energy distribution between 0 and 2.5 eV indicating the population of Hg10 ionic states, which are also accessible by threshold ionization.  相似文献   

14.
Theoretical models of lineshapes in Ar2p photoionization spectra have been calculated for free, neutral argon clusters of different sizes. The lineshape models are fitted to experimental spectra and used to estimate the mean cluster size realized in the experiment. The results indicate that size estimators working from stagnation conditions [R. Karnbach, M. Joppien, J. Stapelfeldt, J. W?rmer and T.M?ller, Rev. Sci. Instrum., 1993, 64, 2838] may underestimate the mean cluster size.  相似文献   

15.
Electric field techniques have been used to investigate certain s, p and d Rydberg absorption bands for dimethylsulfide (DMS) and ethylene sulfide (thiirane) with respect to the polarization of the transitions, the dipole moment, and mean polarizability changes that occur upon excitation.  相似文献   

16.
Conclusions We synthesized some new ionic vinyl monomers derived from -bromomethacrylic acid and a number of nitrogen- and sulfur-containing compounds that are capable of undergoing radical copolymerization.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 187–188, January, 1982.  相似文献   

17.
Neutral vanadium oxide clusters are studied by photoionization time-of-flight (TOF) mass spectroscopy, electronic spectroscopy, and density functional theory (DFT) calculations. Mass spectra of vanadium oxide clusters are observed by photoionization with lasers of three different wavelengths: 118, 193, and 355 nm. Mechanisms of 118 nm single photon ionization and 193 and 355 nm multiphoton ionization/fragmentation of vanadium oxide clusters are discussed on the basis of observed mass spectral patterns and line widths of the mass spectral features. Only the 118 nm laser light can ionize vanadium oxide neutral species by single photon ionization without fragmentation. The stable vanadium oxide neutral clusters under saturated oxygen growth conditions are found to be of the form (VO2)x(V2O5)y. Structures of the first few members of this series of clusters are determined through high level DFT calculations. Fragmentation of this series of clusters through 355 and 193 nm multiphoton ionization processes is discussed in light of these calculated structures. The B(2)B2 <-- X(2)A1 transition is observed for the VO2 neutral species, and nu1 and nu2 vibrations are assigned for both electronic states. From this spectrum, the VO2 rotational and vibrational temperatures are found to be approximately 50 and approximately 700 K, respectively.  相似文献   

18.
The energy distribution curves of the photoelectrons emitted from naphthacene (C18H12) crystal in the vacuum ultraviolet region were measured by an ac modulated retarding potential method. The peaks in the curves, 5.83, 7.28, 8.29, 8.70 and 9.40 eV, are considered to be associated with the valence bands of the naphthacene crystal.  相似文献   

19.
The structures of neutral boron clusters, B(11), B(16), and B(17), have been investigated using vibrational spectroscopy and ab initio calculations. Infrared absorption spectra in the wavelength range of 650 to 1550 cm(-1) are obtained for the three neutral boron clusters from the enhancement of their near-threshold ionization efficiency at a fixed UV wavelength of 157 nm (7.87 eV) after resonant absorption of the tunable infrared photons. All three clusters, B(11), B(16), and B(17), are found to possess planar or quasi-planar structures, similar to their corresponding anionic counterparts (B(n) (-)), whose global minima were found previously to be planar, using photoelectron spectroscopy and theoretical calculations. Only minor structural changes are observed between the neutral and the anionic species for these three boron clusters.  相似文献   

20.
In many cases sample pretreatment continues to be the most time-consuming and costly step in the analytical process. In the present work it is shown that macroporous ion-exchange resins of low exchange capacity can be used both to preconcentrate organic solutes from aqueous samples and to separate these solutes into groups. Thus, neutral and basic organic compounds are both taken up from aqueous solution by a very short column packed with a special cation-exchange resin. The neutral group of compounds is subsequently eluted with an organic solvent. The bases are then eluted 2 M methylamine in methanol. In a similar manner organic acids are concentrated on a special anion-exchange column. Extensive data are shown to demonstrate the efficiency of the preconcentration and group separation of neutral and basic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号