首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Total intermolecular interaction energies are determined with a first version of the Gaussian electrostatic model (GEM-0), a force field based on a density fitting approach using s-type Gaussian functions. The total interaction energy is computed in the spirit of the sum of interacting fragment ab initio (SIBFA) force field by separately evaluating each one of its components: electrostatic (Coulomb), exchange repulsion, polarization, and charge transfer intermolecular interaction energies, in order to reproduce reference constrained space orbital variation (CSOV) energy decomposition calculations at the B3LYP/aug-cc-pVTZ level. The use of an auxiliary basis set restricted to spherical Gaussian functions facilitates the rotation of the fitted densities of rigid fragments and enables a fast and accurate density fitting evaluation of Coulomb and exchange-repulsion energy, the latter using the overlap model introduced by Wheatley and Price [Mol. Phys. 69, 50718 (1990)]. The SIBFA energy scheme for polarization and charge transfer has been implemented using the electric fields and electrostatic potentials generated by the fitted densities. GEM-0 has been tested on ten stationary points of the water dimer potential energy surface and on three water clusters (n = 16,20,64). The results show very good agreement with density functional theory calculations, reproducing the individual CSOV energy contributions for a given interaction as well as the B3LYP total interaction energies with errors below kBT at room temperature. Preliminary results for Coulomb and exchange-repulsion energies of metal cation complexes and coupled cluster singles doubles electron densities are discussed.  相似文献   

2.
A procedure is presented to fit gridded molecular properties to auxiliary basis sets (ABSs) of Hermite Gaussians, analogous to the density fitting (DF) method (Dunlap; et al. J. Chem. Phys. 1979, 71, 4993). In this procedure, the ab initio calculated properties (density, electrostatic potential, and/or electric field) are fitted via a linear- or nonlinear-least-squares procedure to auxiliary basis sets (ABS). The calculated fitting coefficients from the numerical grids are shown to be more robust than analytic density fitting due to the neglect of the core contributions. The fitting coefficients are tested by calculating intermolecular Coulomb and exchange interactions for a set of dimers. It is shown that the numerical instabilities observed in DF are caused by the attempt of the ABS to fit the core contributions. In addition, this new approach allows us to reduce the number of functions required to obtain an accurate fit. This results in decreased computational cost, which is shown by calculating the Coulomb energy of a 4096 water box in periodic boundary conditions. Using atom centered Hermite Gaussians, this calculation is only 1 order of magnitude slower than conventional atom-centered point charges.  相似文献   

3.
All bound rovibrational levels of the H(2)O-H(2) dimer are calculated for total angular momentum J = 0-5 on two recent intermolecular potential surfaces reported by Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] and Hodges et al. [J. Chem. Phys. 120, 710 (2004)] obtained through ab initio calculations. The method used handles correctly the large amplitude internal motions in this complex; it involves a discrete variable representation of the intermolecular distance coordinate R and a basis of coupled free rotor wave functions for the hindered internal rotations and the overall rotation of the dimer. The basis is adapted to the permutation symmetry associated with the para/ortho (p/o) nature of both H(2)O and H(2) as well as to inversion symmetry. Dimers containing oH(2) are more strongly bound than dimers with pH(2), as expected, with dissociation energies D(0) of 33.57, 36.63, 53.60, and 59.04 cm(-1)for pH(2)O-pH(2), oH(2)O-pH(2), pH(2)O-oH(2), and oH(2)O-oH(2), respectively, on the potential of Valiron et al. that corresponds to a binding energy D(e) of 235.14 cm(-1). Rovibrational wave functions are computed as well and the nature of the bound states in the four different dimer species is discussed. Converged rovibrational levels on both potentials agree well with the high-resolution spectrum reported by Weida and Nesbitt [J. Chem. Phys. 110, 156 (1999)]; the hindered internal rotor model that was used to interpret this spectrum is qualitatively correct.  相似文献   

4.
To describe singly-ionized states of molecular clusters we devised an effective Hamiltonian approach that combines (1) accurate monomer ionization potentials from many-electron wave functions with (2) polarization shifts and (3) effective monomer couplings obtained from a simple one-electron approach (the superposition-of-fragment-states (SFS) method [Valeev et al., J. Am. Chem. Soc., 2006, 128, 9882]). The accuracy of the intermolecular coupling parameters evaluated with SFS Hartree-Fock (HF) and Density-Functional-Theory (DFT) variants was evaluated for several weakly-bound dimers and compared against the state-of-the-art equation-of-motion ionization-potential coupled-cluster singles and doubles (EOM-IP-CCSD) data of Krylov and co-workers. The SFS-HF method produces coupling integrals accurate to a few percent, whereas SFS-DFT predictions are substantially worse. A hybrid approach combining SFS-HF couplings and shifts with EOM-IP-CCSD ionization potentials of monomers (denoted as SFS-EOM-IP-CCSD) was applied to ionized states of two conformers of a benzene dimer and ten representative DNA base pairs. The 16 considered SFS-EOM-IP-CCSD ionization potentials of the benzene dimer differed from the reference EOM-IP-CCSD IPs of Krylov and co-workers [Pieniazek et al., J. Chem. Phys. 2007, 127, 044317; Bravaya et al., Phys. Chem. Chem. Phys. 2010, 12, 2261] by less than 0.1 eV on average, and at most by 0.2 eV. For the DNA base pairs the mean absolute (median) deviation of the SFS-EOM-IP-CCSD IPs was 0.27 (0.23) eV; several deviations for non-Koopmans states were as large as 0.9 eV. The SFS-EOM-IP-CCSD method can be readily applied to large molecular clusters with computational effort scaling cubically with the size of the cluster.  相似文献   

5.
We present recent developments in the implementation of the density fitting approach for the Coulomb interaction within the four-component formulation of relativistic density functional theory [Belpassi et al., J. Chem. Phys. 124, 124104 (2006)]. In particular, we make use of the Poisson equation to generate suitable auxiliary basis sets and simplify the electron repulsion integrals [Manby and Knowles, Phys. Rev. Lett. 87, 163001 (2001)]. We propose a particularly simple and efficient method for the generation of accurate Poisson auxiliary basis sets, based on already available standard Coulomb fitting sets. Just as is found in the nonrelativistic case, we show that the number of standard auxiliary fitting functions that need to be added to the Poisson-generated functions in order to achieve a fitting accuracy equal or, in some cases, better than that of the standard procedure is remarkably small. The efficiency of the present implementation is demonstrated in a detailed study of the spectroscopic properties and energetics of several gold containing systems, including the Au dimer and the CsAu molecule. The extraction reaction of a H(2)O molecule from a Au(H(2)O)(9) (+) cluster is also calculated as an example of mixed heavy-light-atom molecular systems. The scaling behavior of the algorithm implemented is illustrated for some closed shell gold clusters up to Au(5) (+). The increased sparsity of the Coulomb matrices involved in the Poisson fitting is identified, as are potential computational applications and the use of the Poisson fitting for the relativistic exchange-correlation problem.  相似文献   

6.
We have investigated the radial electron pair probability distributions (REPPDs) of the helium dimer within the Piris natural orbital functional (PNOF) theory. The analytical formulas to evaluate intracule densities, Fermi, Coulomb, and total correlation holes using our reconstruction functional PNOF-2 [J. Chem. Phys. 126, 214103 (2007)] are derived. The L?wdin's Coulomb holes from PNOF-2 and full configuration interaction calculations are analyzed showing a very similar behavior. New definitions of the Coulomb and Fermi holes based on the cumulant expansion of the two-particle reduced density matrix are presented. The holes are defined in terms of the exact one-particle reduced density matrix and the two-particle cumulant without any reference to the Hartree-Fock state. Through these definitions, we analyze separately the contribution of each component to the total REPPD at several values of the internuclear distance. A straight connection between the Coulomb hole and dispersion interactions is observed.  相似文献   

7.
TATB二聚体分子间作用力及其气相几何构型研究   总被引:1,自引:0,他引:1  
宋华杰  肖鹤鸣  董海山 《化学学报》2007,65(12):1101-1109
采用对称性匹配微扰理论(SAPT)定量地求得TATB分子间的静电、交换排斥、诱导和色散等分子间作用能项, 从理论上揭示了TATB分子间作用本质; 在此基础上, 阐明了密度泛函在研究TATB二聚体时的适合性问题. 结果表明: (1)在有分子间氢键的TATB二聚体中, 库仑力足以与交换排斥力相抗衡, 起主导作用. (2)含分子间氢键的气相TATB二聚体的合理几何构型为平面型结构, 此结构的产生与色散力无关, 因此不管泛函是否含有近程色散作用, 均应预测到这种强极性的平面型结构. (3)在无分子间氢键的TATB二聚体中, 库仑力难以与交换排斥力相抗衡, 色散作用起到了关键作用; (4)在这种情况下, 未含有近程色散作用的密度泛函不可能给出合理构型. 恰好相反, 含有近程色散作用的密度泛函PBE0却能正确地预测到具有“平行重叠”结构且呈微弱极性的TATB二聚体, 色散力是导致这种构型产生的根本原因. “平行重叠”TATB二聚体是典型的色散体系, 其色散力占绝对主导地位并极有可能起源于两个TATB分子上π电子的相互作用. (5)对于所有TATB二聚体, 色散力或很显著或起主导作用. 由于密度泛函或未含有近程色散, 或只能部分地把近程色散表达出来, 这样使得当前所有密度泛函不可能精确求得这些二聚体的作用能.  相似文献   

8.
We present an efficient algorithm for the evaluation of short-range Hartree-Fock exchange energies and geometry gradients in Gaussian basis sets. Our method uses a hierarchy of screening levels to eliminate negligible two-electron integrals whose evaluation is the fundamental computational bottleneck of the procedure. By applying our screening technique to the Heyd-Scuseria-Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] short-range Coulomb hybrid density functional, we achieve a computational efficiency comparable with that of standard nonhybrid density functional calculations.  相似文献   

9.
A quantum mechanics/molecular mechanics (QM/MM) implementation that uses the Gaussian electrostatic model (GEM) as the MM force field is presented. GEM relies on the reproduction of electronic density by using auxiliary basis sets to calculate each component of the intermolecular interaction. This hybrid method has been used, along with a conventional QM/MM (point charges) method, to determine the polarization on the QM subsystem by the MM environment in QM/MM calculations on 10 individual H(2)O dimers and a Mg(2+)-H(2)O dimer. We observe that GEM gives the correct polarization response in cases when the MM fragment has a small charge, while the point charges produce significant over-polarization of the QM subsystem and in several cases present an opposite sign for the polarization contribution. In the case when a large charge is located in the MM subsystem, for example, the Mg(2+) ion, the opposite is observed at small distances. However, this is overcome by the use of a damped Hermite charge, which provides the correct polarization response.  相似文献   

10.
A method is presented to calculate the electron-electron and nuclear-electron intermolecular Coulomb interaction energy between two molecules by separately fitting the unperturbed molecular electron density of each monomer. This method is based on the variational Coulomb fitting method which relies on the expansion of the ab initio molecular electron density in site-centered auxiliary basis sets. By expanding the electron density of each monomer in this way the integral expressions for the intermolecular electrostatic calculations are simplified, lowering the operation count as well as the memory usage. Furthermore, this method allows the calculation of intermolecular Coulomb interactions with any level of theory from which a one-electron density matrix can be obtained. Our implementation is initially tested by calculating molecular properties with the density fitting method using three different auxiliary basis sets and comparing them to results obtained from ab initio calculations. These properties include dipoles for a series of molecules, as well as the molecular electrostatic potential and electric field for water. Subsequently, the intermolecular electrostatic energy is tested by calculating ten stationary points on the water dimer potential-energy surface. Results are presented for electron densities obtained at four different levels of theory using two different basis sets, fitted with three auxiliary basis sets. Additionally, a one-dimensional electrostatic energy surface scan is performed for four different systems (H2O dimer, Mg2+-H2O, Cu+-H2O, and n-methyl-formamide dimer). Our results show a very good agreement with ab initio calculations for all properties as well as interaction energies.  相似文献   

11.
Molecular dynamics simulations are used to study the solid and liquid properties and to predict the melting point of 1-n-propyl-4-amino-1,2,4-triazolium bromide ([patr][Br]) using a force field based on the one developed by Canongia Lopes et al. (J. Phys. Chem. B 2004, 108, 2038) for dialkyl substituted imidazolium salts, which was modified by including terms from the general AMBER force field. Electrostatic charges for the intermolecular interactions were determined from gas-phase ab initio electron structure calculations of the triazolium cation. Simulations of the solid state at 100 K reproduced the experimental density to within 4%. Simulations from 100 K to the melting point and the liquid from 333 to 500 K were performed to determine the temperature dependence of the densities of the two phases. The structures of the solid and liquid phases are characterized with radial distribution functions, which show that there are strong spatial correlations among neighboring ion pairs in liquid [patr][Br]. The dynamic behavior of the ions in the liquid state is also studied by computing velocity autocorrelation functions and the mean-square displacements between the ions. The melting point is determined by simulating void-induced melting. Changes in the density, intermolecular energy, and Lindemann index are used as indicators of the melting transition. The computed melting point is 360 +/- 10 K, which is within 10% of the experimental value 333 K.  相似文献   

12.
13.
We have calculated the intermolecular interaction potentials of the methane dimer at the minimum-energy D(3d) conformation using the Hartree-Fock (HF) self-consistent theory, the correlation-corrected second-order M?ller-Plesset (MP2) perturbation theory, and the density functional theory (DFT) with the Perdew-Wang (PW91) functional as the exchange or the correlation part. The HF calculations yield unbound potentials largely due to the exchange-repulsion interaction. In the MP2 calculations, the basis set effects on the repulsion exponent, the equilibrium bond length, the binding energy, and the asymptotic behavior of the calculated intermolecular potentials have been thoroughly studied. We have employed basis sets from the Slater-type orbitals fitted with Gaussian functions (STO-nG) (n=3-6) [Quantum Theory of Molecular and Solids: The Self-Consistent Field for Molecular and Solids (McGraw-Hill, New York, 1974), Vol. 4], Pople's medium size basis sets of Krishnan et al. [J. Chem. Phys. 72, 650 (1980)] [up to 6-311++G(3df,3pd)] to Dunning's correlation consistent basis sets [J. Chem. Phys. 90, 1007 (1989)] (cc-pVXZ and aug-cc-pVXZ) (X=D, T, and Q). With increasing basis size, the repulsion exponent and the equilibrium bond length converge at the 6-31G** basis set and the 6-311++G(2d,2p) basis set, respectively, while a large basis set (aug-cc-pVTZ) is required to converge the binding energy at a chemical accuracy (approximately 0.01 kcal/mol). Up to the largest basis set used, the asymptotic dispersion coefficient has not converged to the destined C6 value from molecular polarizability calculations. The slow convergence could indicate the inefficacy of using the MP2 calculations with Gaussian-type functions to model the asymptotic behavior. Both the basis set superposition error (BSSE) corrected and uncorrected results are presented to emphasize the importance of including such corrections. Only the BSSE corrected results systematically converge to the destined potential curve with increasing basis size. The DFT calculations generate a wide range of interaction patterns, from purely unbound to strongly bound, underestimating or overestimating the binding energy. The binding energy calculated using the PW91PW91 functional and the equilibrium bond length calculated using the PW91VP86 functional are close to the MP2 results at the basis set limit.  相似文献   

14.
In a recent work [Giese and York J. Chem. Phys. 120, 9903 (2004)] showed that many-body force field models based solely on pairwise Coulomb screening cannot simultaneously reproduce both gas-phase and condensed-phase polarizability limits. In particular, polarizable force fields applied to bifurcated water chains have been demonstrated to be overpolarized with respect to ab initio methods. This behavior was ascribed to the neglect of coupling between many-body exchange and polarization. In the present article we reproduce those results using different ab initio levels of theory and a polarizable model based on the chemical-potential equalization principle. Moreover we show that, when hydrogen-bond (H-bond) forming systems are considered, an additional nonclassical effect, i.e., intermolecular charge transfer, must be taken into account. Such effect, contrarily to that of coupling between many-body exchange and polarization, makes classical polarizable force fields underpolarized. In the case of water at standard conditions, being H-bonded geometries much more probable than the bifurcated ones, intermolecular charge transfer is the dominant effect.  相似文献   

15.
16.
The potential energy surfaces of the naphthalene dimer and benzene–naphthalene complexes are investigated using the recently developed DFT/CCSD(T) correction scheme [J. Chem. Phys. 2008 , 128, 114 102]. One and three minima are located on the PES of the benzene–naphthalene and the naphthalene dimer complexes, respectively, all of which are of the parallel‐displaced type. The stabilities of benzene–naphthalene and the naphthalene dimer are ?4.2 and ?6.2 kcal mol?1, respectively. Unlike the benzene dimer, where the T‐shaped complex is the global minimum, the lowest‐energy T‐shaped structure is about 0.2 and 1.6 kcal mol?1 above the global minimum on the benzene–naphthalene and the naphthalene dimer potential energy surfaces, respectively.  相似文献   

17.
The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non‐nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
Intermolecular interaction energy decompositions using the Constrained Space Orbital Variation (CSOV) method are carried out at the Hartree-Fock level on the one hand and using DFT with usual GGA functionals on the other for a number of model complexes to analyze the role of electron correlation in the intermolecular stabilization energy. In addition to the overall stabilization, the results provide information on the variation, with respect to the computational level, of the different contributions to the interaction energy. The complexes studied are the water linear dimer, the N-methylformamide dimer, the nucleic acid base pairs, the benzene-methane and benzene-N2 van der Waals complexes, [Cu+ -(ImH)3]2, where "ImH" stands for the Imidazole ligand, and ImH-Zn++. The variation of the frozen core energy (the sum of the intermolecular electrostatic energy and the Pauli repulsion energy) calculated from the unperturbed orbitals of the interacting entities indicates that the intramolecular correlation contributions can be stabilizing as well as destabilizing, and that general trends can be derived from the results obtained using usual density functionals. The most important difference between the values obtained from HF and DFT computations concerns the charge transfer contribution, which, in most cases, undergoes the largest increase. The physical meaning of these results is discussed. The present work gives reference calculations that might be used to parametrize new correlated molecular mechanics potentials.  相似文献   

19.
The translational energy release distribution for dissociation of benzene-Ar has been measured and, in combination with the 6(1)(0) rotational contour of the benzene product observed in emission, used to determine the rotational J,K distribution of 0(0) benzene products formed during dissociation from 6(1). Significant angular momentum is transferred to benzene on dissociation. The 0(0) rotational distribution peaks at J=31 and is skewed to low K:Javerage=27, (K)average=10.3. The average angle between the total angular momentum vector and the unique rotational axis is determined to be 68 degrees. This indicates that benzene is formed tumbling about in-plane axes rather than in a frisbeelike motion, consistent with Ar "pushing off" benzene from an off-center position above or below the plane. The J distribution is very well reproduced by angular momentum model calculations based on an equivalent rotor approach [A. J. McCaffery, M. A. Osborne, R. J. Marsh, W. D. Lawrance, and E. R. Waclawik, J. Chem. Phys. 121, 1694 (2004)], indicating that angular momentum constraints control the partitioning of energy between translation and rotation. Calculations for p-difluorobenzene-Ar suggest that the equivalent rotor model can provide a reasonable prediction of both J and K distributions in prolate (or near prolate) tops when dissociation leads to excitation about the unique, in-plane axis. Calculations for s-tetrazine-Ar require a small maximum impact parameter to reproduce the comparatively low J values seen for the s-tetrazine product. The three sets of calculations show that the maximum impact parameter is not necessarily equal to the bond length of the equivalent rotor and must be treated as a variable parameter. The success of the equivalent rotor calculations argues that angular momentum constraints control the partitioning between rotation and translation of the products.  相似文献   

20.
The millimeter wave spectrum of the isotopically substituted CO dimer, (12C18O)2, was studied with the Orotron jet spectrometer, confirming and extending a previous infrared study [A. R. W. McKellar, J. Mol. Spectrosc. 226, 190 (2004)]. A very dilute gas mixture of CO in Ne was used, which resulted in small consumption of 12C18O sample gas and produced cold and simple spectra. Using the technique of combination differences together with the data from the infrared work, six transitions in the 84-127 GHz region have been assigned. They belong to two branches, which connect four low levels of A+ symmetry to three previously unknown levels of A- symmetry. The discovery of the lowest state of A- symmetry, which corresponds to the projection K=0 of the total angular momentum J onto the intermolecular axis, identifies the geared bending mode of the 12C18O dimer at 3.607 cm(-1). Accompanying rovibrational calculations using a recently developed hybrid potential from ab initio coupled cluster [CCSD(T)] and symmetry-adapted perturbation theory calculations [G. W. M. Vissers et al., J. Chem. Phys. 122, 054306 (2005)] gave very good agreement with experiment. The isotopic dependence of the A+/A- energy splitting, the intermolecular separation R, and the energy difference of two ground state isomers, which change significantly when 18O or 13C are substituted into the normal (12C16O)2 isotopolog [L. A. Surin et al., J. Mol. Spectrosc. 223, 132 (2004)], was explained by these calculations. It turns out that the change in anisotropy of the intermolecular potential with respect to the shifted monomer centers of mass is particularly significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号