首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stacks of multilayered rutile TiO(2) nanoflowers can grow on a titanium film through a simple acid vapour oxidation (AVO) method. The growth of this interesting hierarchical architecture is due to the formation of rutile {101} twinned structures and a subtle mismatching between the lattice spacings of the substrate and product.  相似文献   

2.
Via the combination of an electrospinning method with a hydrothermal reaction, a large-scale cedar-like hierarchical nanostructured TiO(2) film with an anatase/rutile composite phase was fabricated.  相似文献   

3.
A novel nanocomposite TiO(2) film consisting of a bamboo leaf-like nano TiO(2) layer on a nanotubular TiO(2) arrays surface is synthesized by electrochemical anodization with wet chemical pretreatment; it shows almost three times higher activity as compared to that of nanotubular TiO(2) arrays alone.  相似文献   

4.
光电化学电池(如染料敏化太阳能电池、量子点敏化太阳能电池以及光电化学水分解电池)是实现太阳能转化及存储的有效手段之一.其中,光电极是光电化学电池的核心组成部分,它集光吸收、光生电荷输运及转移等决定光转化效率的关键过程于一身,因此构筑高活性半导体光电极以实现高效太阳能转化利用引起研究者广泛关注.多孔TiO2纳米颗粒堆垛薄膜光阳极因具有大的比表面积,可提供更多的染料(量子点)担载和反应活性位点,在光电化学电池中表现出优异活性而被广泛研究.然而, TiO2纳米颗粒间大量存在的晶界对光生电荷有较强的散射作用,降低了光生电荷的收集效率.英国牛津大学Snaith研究小组利用模板辅助水热过程首次获得了(001)晶面占优的多孔单晶锐钛矿TiO2微米颗粒,这种多孔单晶TiO2微米颗粒在具有大比表面积的同时,其单晶结构还能有效去除晶界对电荷的散射作用,因而具有优异的电荷输运特性.利用这种多孔单晶TiO2微米颗粒组建的光阳极用于染料敏化太阳能电池中,展现出优异的太阳能光电转化性能.受该工作启发,各种形貌的多孔单晶TiO2微米颗粒作为光催化剂和光电化学分解水用光阳极材料被广泛研究,并表现出优异活性.在单晶微米颗粒堆垛成的薄膜光电极中,虽然单个单晶微米颗粒中晶界对电荷的散射作用被有效抑制,但是单晶颗粒间的晶界仍然存在并影响光生电荷的收集效率.为了彻底抑制晶界对光生电荷的散射作用,每个单晶颗粒都应该贯穿整个薄膜,例如一维TiO2纳米棒单晶阵列薄膜.虽然一维单晶阵列薄膜能够有效提高光生电荷的收集效率,但相对于多孔薄膜具有较小的比表面积,限制了担载染料(量子点)和反应位点的数量.为了增大TiO2单晶纳米棒阵列薄膜的比表面积,目前主要的手段包括调控纳米棒长径比、表面修饰TiO2纳米颗粒以及二次生长构建TiO2枝晶阵列.本文首次提出通过制备多孔单晶TiO2纳米棒单晶阵列薄膜来获得高比表面积和高光生电荷收集效率的光阳极,提高光电化学电池的效率.在透明导电薄膜(FTO)表面利用水热生长TiO2纳米棒阵列薄膜之前,预先在FTO基体上沉积一层SiO2球密堆模板, TiO2纳米棒单晶阵列在从FTO表面向上生长过程中,会将SiO2球模板包裹进TiO2纳米棒中,再通过碱溶液将SiO2球模板溶解,首次在FTO基体上原位生长出多孔单晶TiO2纳米棒阵列薄膜.将所得多孔单晶金红石TiO2纳米棒阵列薄膜作为光电化学分解水电池光阳极,其光电化学分解水活性相对于实心单晶金红石TiO2纳米棒阵列提高了2.6倍.多孔单晶金红石TiO2纳米棒阵列光阳极性能的提升可归因于:(1)多孔结构赋予多孔单晶金红石TiO2纳米棒阵列薄膜更大的比表面积,可提供更多的反应活性位点;(2)多孔结构能够有效缩短单晶金红石TiO2纳米棒中光生电荷体相输运距离,提高光生电荷的收集效率;(3)多孔结构通过对光多次反射吸收可有效增强光吸收,产生更多光生电荷参与水分解反应;(4)在制备过程中引入Si掺杂,导致多孔单晶金红石TiO2纳米棒带隙扩大了0.1 eV,带隙增大归因于导带位置负移0.1 eV,光生电子具有更强的还原能力,光电流起始电位相应负移约0.1 V.  相似文献   

5.
6.
Titanium dioxide (TiO2) nanotubes are fabricated into anodic aluminum oxide (AAO) membrane via atomic layer deposition (ALD). For the ALD of TiO2, gaseous precursors, titanium (IV) isopropoxide and water are sequentially applied and chemically reacted with each other. A thickness of nanotubes is precisely controlled by the applied cycle numbers of ALD and the morphology of nanostructures is investigated by SEM and TEM. The amorphous property of TiO2 nanostructures is revealed by XRD and the composition of nanotubes is measured by TEM–EDX. The impurity contents and binding structure of the nanostructures are analyzed by XPS. The electrostatic capacitance of TiO2 nanotubes into AAO is 480 μF/cm2 and it is about 3 times higher compared with AAO membrane (172 μF/cm2).  相似文献   

7.
We report here the use of a layer-by-layer assembly technique to prepare novel TiO2 heterogeneous nanostructures in which anatase nanoparticles are assembled on rutile nanorods. The preparation includes assembling anatase nanoparticle multilayers on rutile nanorods via electrostatic deposition using poly(sodium 4-styrene sulfonate) as a bridging or adhesion layer, followed by burning off the polymeric material via calcination. The composition of the heterogeneous nanostructures (i.e., the anatase-to-rutile ratio) can be tuned conveniently by controlling the experimental conditions of the layer-by-layer assembly. It was found that, with the optimum preparation conditions, the heterogeneous nanostructures showed better photocatalytic activity for decomposing gaseous acetaldehyde than either the original anatase nanoparticles or the rutile nanorods. This is discussed on the basis of the synergistic effect of the existence of both rutile and anatase in the heterogeneous nanostructure.  相似文献   

8.
A simple electrodepositing method was proposed for fabricating a uniform, tight, and close-packed TiO2 nanocrystalline film on the ITO substrate. The electrode and dye-sensitized solar cell (DSSC) with electrodeposited TiO2 layer were characterized by scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The phthalocyanin dye, zinc tetra-carboxyl phthalocyanin complex, was used as a model dye to evaluate the influence of close-packed TiO2 blocking layer on the photocurrent–voltage property. On the electrodeposition, the close-packed TiO2 layer could effectively inhibit the recombination of charges, and therefore improve the performances of the corresponding cells. The effects of film thickness on light transmittance and photocurrent density of the corresponding cell were also demonstrated. The optimum film thickness was found to be approximately 400 nm. At the optimum thickness, the photocurrent density greatly increased comparing with that of the screen printing TiO2 film. These results imply that our proposition was a potential and feasible method for the fabrication of DSSC practically.  相似文献   

9.
Nonaqueous reactions between titanium(IV) chloride and alcohols (benzyl alcohol or n-butanol) were used for the synthesis of anatase TiO2 particles, while rutile TiO2 particles were synthesized in aqueous media by acidic hydrolysis of titanium(IV) chloride. The X-ray diffraction measurements proved the exclusive presence of either the anatase or the rutile phase in prepared samples. The photoluminescence of both kinds of particles (anatase and rutile) with several well-resolved peaks extending in the visible spectral region was observed, and the quantum yield at room temperature was found to be 0.25%. Photon energy up-conversion from colloidal anatase and rutile TiO2 particles was observed at low excitation intensities. The energy of up-converted photoluminescence spans the range of emission of normal photoluminescence. The explanation of photon energy up-conversion involves mid-gap energy levels originating from oxygen vacancies.  相似文献   

10.
Adsorption and desorption of toluene on bare and TiO2-coated silica with a mean pore size of 15 nm under dry and humid conditions were studied using toluene breakthrough curves and temperature programmed desorption (TPD) of toluene and CO2. Two TiO2/silica samples (either partially or fully covered with TiO2) were prepared with 50 and 200 cycles of TiO2 atomic layer deposition (ALD), respectively. The capacity of silica to adsorb toluene improved significantly with TiO2-thin film coating under dry conditions. However, toluene desorption from the surface due to displacement by water was more pronounced for TiO2-coated samples than bare samples under humid conditions. In TPD experiments, silica with a thinner TiO2 film (50-ALD cycled) had the highest reactivity for toluene oxidation to CO2 both in the absence and presence of water. Toluene adsorption and oxidation reactivity of silica can be controlled by modifying the silica surface with small amount of TiO2 using ALD.  相似文献   

11.
Theoretical study of N-doped TiO2 rutile crystals   总被引:1,自引:0,他引:1  
The N-doping effects on the electronic and optical properties of TiO2 rutile crystal have been studied using density functional theory (DFT). The calculations of several possible N-doped structures show that band gaps have little reduction but some N 2p states lie within the band gap in the substitutional N to O structure and interstitial N-doped rutile supercell, which results in the reduction of the photon-transition energy and absorption of visible light. In contrast, substitutional N to Ti doped model has a significant band-gap narrowing. The results maybe clarify confusions in nitrogen-doped TiO2 rutile crystal.  相似文献   

12.
Titanium dioxide (TiO2) is recognized as the most efficient photocatalytic material, but due to its large band gap energy it can only be excited by UV irradiation. Doping TiO2 with nitrogen is a promising modification method for the utilization of visible light in photocatalysis. In this work, nitrogen-doped TiO2 films were grown by atomic layer deposition (ALD) using TiCl4, NH3 and water as precursors. All growth experiments were done at 500 °C. The films were characterized by XRD, XPS, SEM and UV–vis spectrometry. The influence of nitrogen doping on the photocatalytic activity of the films in the UV and visible light was evaluated by the degradation of a thin layer of stearic acid and by linear sweep voltammetry. Light-induced superhydrophilicity of the films was also studied. It was found that the films could be excited by visible light, but they also suffered from increased recombination.  相似文献   

13.
Journal of Solid State Electrochemistry - In spite of the TiO2 compact layer (TCL) being widely used, it still needs more study. This paper took Ni-doped TCLs as the research target, using an...  相似文献   

14.
Direct investigation of the electronic structure of catalyst surfaces on the near-atomic scale in general has not been impossible in the past. However, with the advent of the scanning tunneling microscope (STM), the opportunity arises for incorporating the scanning tunneling spectroscopy (STS) for correlation in-situ surface electronic structure with topography on a sub-nanometer scale. In this paper, we report the STS results of thin film TiO2 and Pt-deposited TiO2 annealed at 450℃. It was found that the TiO2 semiconductor changes from n-type to p-type after Pt deposition.Fig. 1 shows the surface electronic property (Ⅰ-Ⅴ curve) of thin TiO2 film measured in air by STS. A steep descent of the anodic tunneling current at ca.- 1.0 Ⅴ and a rapid ascent of cathodic tunneling current at ca. +2.0V. The zero bias represents the Fermi level (Ef). Ef is situated at the Ecb side indicating that the thin TiO2 film possesses the same band gap as that of bulk TiO2 phase ( Egs =3.0 to 3.2 eV). For the sample of Pt-deposited TiO2 film, Pt/(Pt+Ti+O) atomic ratio≈0.2, which indicates that the surface of TiO2 film is partly covered by Pt particles, and there are two types of Ⅰ-Ⅴ curves to be detected. One of them (Fig.2a)is attributed to the electronic property of TiO2, which has same Egs as that shown in Fig. 1. However, the Ef is transferred to valence side (△≈1eV). This phenomenon hints that TiO2 is doped by an impurity which can introduce h+ into TiO2 lattice.Such a type of defects may be described by Ti1-xPtxO2(h )2x, here Pt+2 as a substitutional site of Ti+4. Fig.2b is the Ⅰ-Ⅴ curve of a Pt particle situated on a TiO2 particle contained Ti1-xPtxO2(h )2x.  相似文献   

15.
Chemical reactions on rutile TiO2(110)   总被引:1,自引:0,他引:1  
Understanding the surface chemistry of TiO2 is key to the development and optimisation of many technologies, such as solar power, catalysis, gas sensing, medical implantation, and corrosion protection. In order to address this, considerable research effort has been directed at model single crystal surfaces of TiO2. Particular attention has been given to the rutile TiO2(110) surface because it is the most stable face of TiO2. In this critical review, we discuss the chemical reactivity of TiO2(110), focusing in detail on four molecules/classes of molecules. The selected molecules are water, oxygen, carboxylic acids, and alcohols-all of which have importance not only to industry but also in nature (173 references).  相似文献   

16.
Surface structures of rutile TiO(2) (011) are determined by a combination of noncontact atomic force microscopy (NC-AFM), scanning tunneling microscopy (STM), and density functional calculations. The surface exhibits rowlike (n x 1) structures running along the [01] direction. Microfaceting missing-row structural models can explain the experimental results very well. Calculated images for NC-AFM and STM are in good agreement with the experimental results. A decrease of the density of dangling bonds stabilizes the surface energy, which results in the microfaceting missing-row reconstructions.  相似文献   

17.
We report a novel process for the preparation of dense, transparent TiO2 films of 2.5 mum thickness on a F-doped SnO2-covered glass substrate. The starting solution contained peroxotitanate complex ions, which are relatively stable under the experimental conditions, permitting the deposition of highly textured rutile nanocrystalline films. The nanocrystals exhibit specific orientations along the (101) and (002) crystalline planes. Kinetic studies suggest that the precipitation started from the formation of amorphous solids, followed by crystallization through a dissolution-recrystallization process. Although a minor phase of anatase was detected only for powders collected from solutions after film preparation, not for films, the transformation from amorphous to anatase was believed to occur before further transformation of anatase to rutile. The present method enables film synthesis on a surface with a large area, and therefore could be integrated into the processing of electroluminescent devices.  相似文献   

18.
Surface structures on rutile TiO2 (001) have been studied by using scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional calculations. Prior investigations have observed many kinds of complicated surface structures; however, detailed atomic structures and the mechanism of the reconstructions are still unknown. We evaluate the energetical stability of the surface structures. The calculational results suggest that a [111] microfaceting model is energetically stable compared with the unreconstructed (1 x 1) model. We propose microfaceting structural models that are in good agreement with atomically resolved STM images. This structural concept can be extended to other rutile TiO2 surfaces in general.  相似文献   

19.
The densities of states for small (TiO2)x-clusters, x = 1, 3, 6, 9, and 14, have been calculated by means of the INDO method. The shape of the valence bands' density of states (DOS ) are discussed in terms of the distribution of coordination numbers. A one-slab cluster with uniform distribution of the coordination numbers was used to compare our calculations with experimental spectra. The photoelectric DOS and DOS for a cluster with an oxygen vacancy are in very good agreement with experimental findings for the TiO2 (001) surface. O1s core level shifts between a surfacelike and a bulklike oxygen atom have been estimated. It is concluded that the observed surface–bulk shift for the TiO2 (001) surface contains a substantial relaxation contribution. © 1992 John Wiley & Sons, Inc.  相似文献   

20.
One-dimensional structure of ZnO nanorod arrays on nanocrystalline TiO2/ITO conductive glass substrates has been fabricated by cathodic reduction electrochemical deposition methods in the three-electrode system, with zinc nitrate aqueous solution as the electrolyte, and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and photoluminescence (PL) spectra. The effects of film substrates, electrolyte concentration, deposition time, and methenamine (HMT) addition on ZnO deposition and its luminescent property were investigated in detail. The results show that, compared with on the ITO glass substrate, ZnO is much easily achieved by electrochemical deposition on the TiO2 nanoparticle thin films. ZnO is hexagonally structured wurtzite with the c-axis preferred growth, and further forms nanorod arrays vertically on the substrates. It is favorable to the growth of ZnO to extend the deposition time, to increase the electrolyte concentration, and to add a certain amount of HMT in the system, consequently improving the crystallinity and orientation of ZnO arrays. It is demonstrated that the obtained ZnO arrays with high crystallinity and good orientation display strong band-edge UV (375 nm) and weak surface-state-related green (520 nm) emission peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号