首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anion conformation of a low-viscosity room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl) imide (EMI+FSI-) has been studied by Raman spectra and theoretical DFT calculations. Three strong Raman bands were found at 293, 328, and 360 cm(-1), which are ascribed to the FSI- ion. These Raman bands show significant temperature dependence, implying that two FSI- conformers coexist in equilibrium. This is supported by theoretical calculations that the FSI- ion is present as either C2 (trans) or C1 (cis) conformer; the former gives the global minimum, and the latter has a higher SCF energy of about 4 kJ mol(-1). Full geometry optimizations followed by normal frequency analyses show that the observed bands at 293, 328, and 360 cm(-1) are ascribed to the C2 conformer. The corresponding vibrations at 305, 320, and 353 cm(-1) were extracted according to deconvolution of the observed Raman bands in the range280-400 cm(-1 )and are ascribed to the C1 conformer. The enthalpy DeltaH degrees of conformational change from C2 to C1 was experimentally evaluated to be ca. 4.5 kJ mol(-1), which is in good agreement with the predicted value by theoretical calculations. The bis(trifluoromethanesulfonyl) imide anion (TFSI-) shows a conformational equilibrium between C1 and C2 analogues (DeltaH degrees = 3.5 kJ mol(-1)). However, the profile of the potential energy surface of the conformational change for FSI- (the F-S-N-S dihedral angle) is significantly different from that for TFSI- (the C-S-N-S dihedral angle).  相似文献   

2.
Raman spectra of liquid 1-ethyl-3-methylimidazolium (EMI+) salts, EMI(+)BF4-, EMI(+)PF6-, EMI(+)CF3SO3-, and EMI(+)N(CF3SO2)2-, were measured over the frequency range 200-1600 cm(-1). In the range 200-500 cm(-1), we found five bands originating from the EMI+ ion at 241, 297, 387, 430, and 448 cm(-1). However, the 448 cm(-1) band could hardly be reproduced by theoretical calculations in terms of a given EMI+ conformer, implying that the band originates from another conformer. This is expected because the EMI+ involves an ethyl group bound to the N atom of the imidazolium ring, and the ethyl group can rotate along the C-N bond to yield conformers. The torsion energy for the rotation was then theoretically calculated. Two local minima with an energy difference of ca. 2 kJ mol(-1) were found, suggesting that two conformers are present in equilibrium. Full geometry optimizations followed by normal frequency analyses indicate that the two conformers are those with planar and nonplanar ethyl groups against the imidazolium ring plane, and the nonplanar conformer is favorable. It elucidates that bands at 241, 297, 387, and 430 cm(-1) mainly originate from the nonplanar conformer, whereas the 448 cm(-1) band does originate from the planar conformer. Indeed, the enthalpy for conformational change from nonplanar to planar EMI+ experimentally obtained by analyzing band intensities of the conformers at varying temperatures is practically the same as that evaluated by theoretical calculations. We thus conclude that the EMI+ ion exists as either a nonplanar or planar conformer in equilibrium in its liquid salts.  相似文献   

3.
2-Phenylethylamine (PEA) is the simplest aromatic amine neurotransmitter, as well as one of the most important. In this work, the conformational equilibrium and hydrogen bonding in liquid PEA were studied by means of Raman spectroscopy and theoretical calculations (DFT/MP2). By changing the orientation of the ethyl and the NH(2) group, nine possible conformers of PEA were found, including four degenerate conformers. Comparison of the experimental Raman spectra of liquid PEA and the calculated Raman spectra of the five typical conformers in selected regions (550-800 and 1250-1500 cm(-1)) revealed that the five conformers can coexist in conformational equilibrium in the liquid. The NH(2) stretching mode of the liquid is red-shifted by ca. 30 cm(-1) relative to that of an isolated PEA molecule (measured previously), implying that intermolecular N-H···N hydrogen bonds play an important role in liquid PEA. The relative intensity of the Raman band at 762 cm(-1) was found to increase with increasing temperature, indicating that the anti conformer might be favorable in liquid PEA at room temperature. The blue shift of the band for the bonded N-H stretch with increasing temperature also provides evidence of the existence of intermolecular N-H···N hydrogen bonds.  相似文献   

4.
Infrared spectra of 3,3,3-trifluoropropyltrichlorosilane (CF3CH2CH2SiCl3) were obtained in the vapour, amorphous and crystalline solid phases in the range 4000-50 cm-1. Additional spectra in argon matrices at 5.0 K were recorded before and after annealing to 20-36 K. Raman spectra of the compound as a liquid were recorded at various temperatures between 298 and 210 K and spectra of the amorphous and crystalline solids were obtained. The spectra suggested the existence of two conformers (anti and gauche) in the fluid phases and in the matrix. When the vapour was shock-frozen on a cold finger at 80 K and subsequently annealed to 120-150 K, six weak or very weak Raman bands vanished in the crystal. Similar variations were observed in the corresponding infrared spectra after annealing and four very weak IR bands disappeared after crystallization. From intensity variations between 298 and 210 K of three Raman band pairs an average value Delta(conf)H degrees (gauche-anti)=6.1+/-0.5 kJmol-1 was obtained in the liquid. Annealing experiments indicate that the anti conformer also has a lower energy in the argon matrices. The conformational equilibrium is highly shifted towards anti in the liquid, and the low energy conformer also forms the crystal. The spectra of the abundant anti conformer and the few bands ascribed to the gauche conformer have been interpreted. Ab initio calculations at the HF/6-311G(**) and B3LYP/6-311G(**) gave optimized geometries, infrared and Raman intensities and vibrational frequencies for the anti and gauche conformers. The conformational energy differences derived were 11.8 and 9.2 kJmol-1 from the HF and the B3LYP calculations, respectively.  相似文献   

5.
The solvation structure of the lithium ion in room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EMI(+)TFSI(-)) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP(+0TFSI(-)) has been studied by Raman spectroscopy and DFT calculations. Raman spectra of EMI(+)TFSI(-) and BMP(+)TFSI(-) containing Li(+)TFSI(-) over the range 0.144-0.589 and 0.076-0.633 mol dm(-3), respectively, were measured at 298 K. A strong 744 cm-1 band of the free TFSI(-) ion in the bulk weakens with increasing concentration of the lithium ion, and it revealed by analyzing the intensity decrease that the two TFSI(-) ions bind to the metal ion. The lithium ion may be four-coordinated through the O atoms of two bidentate TFSI(-) ions. It has been established in our previous work that the TFSI(-) ion involves two conformers of C(1) (cis) and C(2) (trans) symmetries in equilibrium, and the dipole moment of the C(1) conformer is significantly larger than that of the C(2) conformer. On the basis of these facts, the geometries and SCF energies of possible solvate ion clusters [Li(C(1)-TFSI(-))(2)](-), [Li(C(1)-TFSI(-))(C(2)-TFSI(-))](-), and [Li(C(2)-TFSI(-))(2)](-) were examined using the theoretical DFT calculations. It is concluded that the C(1) conformer is more preferred to the C(2) conformer in the vicinity of the lithium ion.  相似文献   

6.
The infrared spectra (3200-50 cm(-1)) of gaseous and solid and Raman spectra (3200-10 cm(-1)) of the liquid and solid methylvinyl silyl chloride, CH(2)=CHSiH(CH(3))Cl, and the Si-d isotopomer have been recorded. The three expected stable conformers (the three different groups eclipsing the double bond) have been identified in the fluid phase, but it was not possible to obtain an annealed solid with a single conformer. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton has been carried out. From these data the enthalpy differences between the most stable conformer with the hydrogen atom (HE) eclipsing the double bond to that with the chlorine atom (ClE) and the methyl group (ME) eclipsing the double bond have been determined to be 17+/-4 cm(-1) (203+/-48 Jmol(-1)) and 80+/-12 cm(-1) (957+/-144 Jmol(-1)), respectively. However in the liquid state the ME conformer is the most stable form with enthalpy differences of 13+/-4 and 27+/-7 cm(-1) to the HE and ClE rotamers, respectively. It is estimated that there is 39% of the HE conformer, 35% of the ClE conformer, and 26% of the ME conformer present at ambient temperature. A complete vibration assignment is proposed for the HE conformer which is based on infrared band contours and group frequencies, which is supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. Additionally, several of the fundamentals for the other two conformers have been assigned. The optimal geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational frequencies are reported for all three conformers from MP2/6-31G(d,p) ab initio calculations with full electron correlation. Optimized geometrical parameters and conformational stabilities have been obtained from MP2/6-311+G(d,p) calculations. At this highest level of calculations, the HE conformer is predicted to be more stable by 62 and 84 cm(-1) than the ME and ClE conformers, respectively. The coefficients from the potential function governing the conformational interchange have been obtained from the MP2/6-31G(d) ab initio calculations. By utilizing the frequency of the SiH stretching mode, the r(0)-H distance has been determined to be 1.481 A for the HE conformer. The ab initio calculated quantities are compared to the experimentally determined values where applicable, as well as to some corresponding results for some similar molecules.  相似文献   

7.
The experimental and theoretical study on the structures and vibrations of 6-chloronicotinic acid (6-CNA, C(6)H(4)ClNO(2)) are presented. The Fourier transform infrared spectra (4,000-50 cm(-1)) and the Fourier transform Raman spectra (3,500-50 cm(-1)) of the title molecule in solid phase have been recorded, for the first time. The geometrical parameters and energies have been obtained for all four conformers from DFT (B3LYP) with different basis sets calculations. There are four conformers, C1, C2, C3, and C4 for this molecule. The computational results diagnose the most stable conformer of 6-CNA as the C1 form. The vibrations of the two stable and two unstable conformers of 6-CNA are researched with the aid of quantum chemical calculations. The molecular structure, vibrational frequencies, infrared intensities and Raman scattering activities and theoretical vibrational spectra were calculated a pair of molecules linked by the intermolecular OH...O hydrogen bond. The spectroscopic and theoretical results are compared to the corresponding properties for 6-CNA stable monomers and dimer of C1 conformer.  相似文献   

8.
Infrared spectra (3500-50 cm(-1)) of gaseous and solid, and Raman spectrum (3500-30 cm(-1)) of liquid vinyldifluorosilane, CH(2)z.dbnd6;CHSiF(2)H, are reported. Both the cis and gauche rotamers have been identified in the fluid phases. From temperature-dependent FT-infrared spectra of krypton solutions, it is shown that the cis conformer is more stable than the gauche form by 119+/-12 cm(-1) (1.42+/-0.14 kJ mol(-1)). At ambient temperature there is 53+/-2% of the gauche conformer present. Complete vibrational assignments are provided for the cis conformer and several modes are identified for the gauche form. Harmonic force constants, fundamental frequencies, infrared intensities, and Raman activities have been obtained from MP2/6-31G(d) calculations with full electron correlation. The optimized geometries and conformational stabilities have also been obtained from ab initio MP2/6-31G(d), MP2/6-311+G(d,p), and MP2/6-311+G(2d,2p) calculations with full electron correlation as well as from density functional theory calculations (DFT) by the B3LYP method. The SiH bond distances (r(0)) of 1.472 and 1.471 A have been obtained for the cis and gauche conformers, respectively, from the silicon-hydrogen stretching frequencies. These results are compared to the corresponding quantities of the corresponding carbon analogue as well as with some similar molecules.  相似文献   

9.
The infrared (3200-40 cm(-1)) spectra of gaseous and solid 1,1-dicyclopropylethene, (c-C3H5)2C=CH2, along with the Raman (3200-40 cm(-1)) spectra of liquid and solid phases, have been recorded. The major trans-gauche (C=C bond trans to one ring with the other ring rotated about 60 degrees from the C=C bond, trivial C(1) symmetry) and gauche-gauche (the two three-membered rings rotated oppositely about 60 degrees from the C=C bond, C2 symmetry) rotamers have been confidently identified in the fluid phases, but no definitive spectroscopic evidence was found for the gauche-gauche' form (the two three-membered rings rotated to the same side about 60 degrees from the C=C bond, Cs symmetry), which is calculated to be present in no more than 6% at ambient temperature. Variable-temperature (-55 to -100 degrees C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. Utilizing six different combinations of pairs of bands from the C1 and C2 conformers, the average enthalpy difference between these two has been determined to be 146 +/- 30 cm(-1) (1.75 +/- 0.36 kJ x mol(-1)), with the C1 form more stable. Given statistical weights of 2:1:1 respectively for the C1, C2, and Cs forms, it is estimated that there are 75 +/- 2% C(1) and 19 +/- 1% C2 conformers present at ambient temperature. By utilizing predicted frequencies, infrared intensities, Raman activities, and band envelopes from scaled MP2(full)/6-31G(d) ab initio calculations, a complete vibrational assignment is made for the C1 form and a number of fundamentals of the C2 conformer have been identified. The structural parameters, dipole moments, and conformational stabilities have been obtained from ab initio calculations at the level of Hartree-Fock (RHF), the perturbation method to second order with full electron correlation (MP2(full)), and hybrid density functional theory (DFT) by the B3LYP method with a variety of basis sets. The predicted conformational stabilities from the MP2 calculations with relatively large basis sets are consistent with the experimental results. Structural parameters are estimated from the MP2(full)/6-311+G(d,p) predictions which are compared to the previously reported electron diffraction parameters. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

10.
The infrared (3100-40 cm(-1)) spectra of gaseous and solid and Raman (3200-20 cm(-1)) spectra of liquid with qualitative depolarization values and solid n-propyltrifluorosilane, CH(3)CH(2)CH(2)SiF(3), have been recorded. Additionally the infrared spectra of the sample in nitrogen and argon matrices have been recorded. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 135+/-14 cm(-1) (1.62+/-0.17 kJ mol(-1)) with the anti conformer the more stable form. At ambient temperature it is estimated that there is 51+/-2% of the gauche conformer present. Also the enthalpy difference in the liquid was obtained from variable temperature studies of the Raman spectra and from three conformer pairs an average value of 179+/-18 cm(-1) (2.14+/-0.22 kJ mol(-1)) was obtained again with the anti form the more stable conformer. Relatively complete vibrational assignments are proposed for both conformers based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios which are supported by normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities, depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d, p) and 6-311+G(2d, 2p) basis sets. By utilizing the previously reported microwave rotational constants for five isotopomers of CH(3)SiF(3) along with ab initio predicted structural values, r(0) parameters have been obtained for methyltrifluorosilane. Similarly, from the ab initio predicted parameters "adjusted r(0)" parameters have been estimated for both conformers of n-propyltrifluorosilane. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

11.
The infrared spectra (3200-400 cm(-1)) of krypton solutions of 1,3-difluoropropane, FCH2CH2CH2F, at variable temperatures (-105 to -150 degrees C) have been recorded. Additionally, the infrared spectra (3200-50 cm(-1)) of the gas and solid have been recorded as well as the Raman spectrum of the liquid. From a comparison of the spectra of the fluid phases with that in the solid, all of the fundamental vibrations of the C2 conformer (gauche-gauche) where the first gauche indicates the form for one of the CH2F groups and the second gauche the other CH2F, and many of those for the C1 form (trans-gauche) have been identified. Tentative assignments have been made for a few of the fundamentals of the other two conformers, i.e. C2v (trans-trans) and Cs (gauche-gauche'). By utilizing six pairs of fundamentals for these two conformers in the krypton solutions, an enthalpy difference of 277 +/- 28 cm(-1) (3.31 +/- 0.33 kJ mol(-1)) has been obtained for the C2 versus C1 conformer with the C2 conformer the more stable form. For the C2v conformer, the enthalpy difference has been determined to be 716 +/- 72 cm(-1) (8.57 +/- 0.86 kJ mol(-1)) and for the Cs form 971 +/- 115 cm(-1) (11.6 +/- 1.4 kJ mol(-1)). It is estimated that there is 64 +/- 3% of the C2 form, 34 +/-3% of the C1 form, 1% of the C2v form and 0.6% of the Cs conformer present at ambient temperature. Equilibrium geometries and total energies of the four stable conformers have been determined from ab initio calculations with full electron correlation by the perturbation method to second order as well as by hybrid density functional theory calculations with the B3LYP method using a number of basis sets. The MP2 calculations predict the C1 conformer stability to be slightly higher than the experimentally determined value whereas for the C2v and Cs conformers the predicted energy difference is much larger than the experimental value. The B3LYP calculations predict a better energy difference for both the C1 and C2v as well as for the Cs conformers than the MP2 values. A complete vibrational assignment is proposed for the C2 conformer and many of the fundamentals have been identified for the C1 form based on the force constants, relative intensities and rotational-vibrational band contours obtained from the predicted equilibrium geometry parameters. By combining previously reported rotational constants for the C2 and C1 conformers with ab initio MP2/6-311 + G(d, p) predicted parameters, adjusted r0 parameters have been obtained for both conformers. Comparisons are made with the parameters obtained for some other molecules containing the FCH2 group. The spectroscopic and theoretical results are compared to the corresponding properties for some similar molecules.  相似文献   

12.
The infrared spectra (3200-300 cm(-1)) of the gas and solid and the Raman spectra (3200-30 cm(-1) of the liquid with quantitative depolarization values and the solid have been recorded of ethynylmethyl cyclobutane (cyclobutylmethyl acetylene), c-C4H7CH2C[ triple bond]CH. Both the equatorial and the axial conformers have been identified in the fluid phases and both the gauche and trans conformations of the methyl acetylenic group have been identified for each ring conformer. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data the enthalpy differences have been determined to the 112 +/- 11 cm(-1) (1.34 +/- 0.13 kJ mol) between the most stable equatorial-trans (Et) conformer and the equatorial-gauche (Eg) conformer which is the second most stable conformer and 327 +/- 35 cm(-1) (3.91 + 0.42 kJ/mol) with the axial-gauche (Ag) conformer which is the least stable conformer. The enthalpy difference between the axial-trans (At) and the equatorial-gauche(Eg) is 56 +/- 6 cm(-1). At ambient temperature there is approximately 33% of the Et conformer, 38% of the Eg form, 15% of the At and 14% of the Ag conformer. For the polycrystalline solid the Eg conformer is the only form present which probably results form the packing in the crystal. A complete vibrational assignment is proposed for both equatorial conformers and additionally a few of the fundamentals of the At and Ag conformers have been assigned. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. Complete equilibrium geometries have been determined for all four possible rotamers by ab initio calculations employing the 6-31G(d) and 6-311 + + G(d,p) basis sets at levels of restricted Hartree-Fock (RHF) and /or Moller-Plesset (MP2) with full electron correlation by the perturbation method to second order. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

13.
The infrared (3200-30 cm(-1) spectra of gaseous and solid, the Raman spectra (3200-30 cm(-1)) of the liquid and solid vinyl silyl bromide, CH2CHSiH2Br, have been recorded. Additionally, quantitative depolarization values have been obtained. Both the gauche and cis conformers have been identified in the fluid phases but only the gauche conformer remains in the solid. Variable temperature studies from 0 to -87 degrees C of the Raman spectrum of the liquid was carried out. From these data, the enthalpy difference has been determined to be 22 +/- 6 cm(-1) (0.26 +/- 0.08 kJ/mol), with the gauche conformer being the more stable form. The predictions from the ab initio calculations up to MP2/6-311 + + G(2d,2p) basis set favor the gauche as the more stable form. A complete vibrational assignment is proposed for both the gauche and cis conformers based on infrared band contours, relative intensities, depolarization values and group frequencies. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations and the potential energy terms for the conformer interconversion have been obtained from the same calculations. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing a variety of basis sets up to 6-311 + + G(2d,2p) at levels of restricted Hartree-Fock (RHF) and/or Moller-Plesset (MP) to second order. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

14.
Infrared spectra of gaseous and solid 2-cyclopropylpropene (2-CPP, c-C3H5C (CH3)CH2) have been recorded from 3500 to 40 cm-1, and Raman spectra (3200-150 cm-1) of the liquid as well as mid-infrared spectra of 2-CPP in liquid krypton solution (from -105 to -150 degrees C) were also obtained. Ab initio calculations, with basis sets up to 6-311+G(2df, 2pd), were carried out for this molecule, using the restricted Hartree-Fock (RHF) approach, with full electron correlation by the perturbation method to second order (MP2(full)) and density functional theory (DFT) by the B3LYP method. The combination of the experimental and computational results (particularly with the higher basis sets) unequivocally identifies the more stable conformer of 2-CPP as the trans form, with the gauche rotamer higher in energy, but also stable. The cis structure of this compound is not observed experimentally, and is predicted by the computational approaches to be a transition state. By studying the temperature variation of two well-resolved sets of conformational doublets of 2-CPP dissolved in liquid krypton, an average enthalpy difference between conformers of 182+/-18 cm-1 (2.18+/-0.22 kJ mol-1) has been determined, with the trans conformation lower in energy in the fluid states, and the sole conformer present in the polycrystalline solid phase. This enthalpy difference corresponds to an ambient temperature conformational equilibrium in the fluid phases of 2-cyclopropylpropene containing approximately 55+/-2% of the more stable trans rotameric form. A complete vibrational assignment for the trans conformer of 2-CPP is given, and many of the bands of the gauche rotamer have also been assigned. Structural parameters, dipole moments, and rotational constants for this molecule have been calculated at the MP2(full)/6-311+G(d,p) level, and these results--as well as the results from the experimental studies--are compared to similar quantities in related compounds.  相似文献   

15.
The infrared (3,200-30 cm(-1) spectra of gaseous and solid 1-bromosilacyclobutane, c-C3H6SiBrH, have been recorded. Additionally, the Raman spectra of the liquid (3,200- 30 cm(-1) with quantitative depolarization values and the solid have been recorded. Both the equatorial and the axial conformers have been identified in the fluid phases, Variable temperature ( - 105 to - 150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data the enthalpy difference has been determined to be 182 +/- 18 cm(-1) (2.18 +/- 0.22 kJ/mol) with the equatorial conformer the more stable rotamer and only conformer remaining in the annealing solid. At ambient temperature there is approximately 22% of the axial conformer present in the vapor phase. A complete vibrational assignment is proposed for both conformers based on infrared contours, relative intensities, depolarization values and group frequencies. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. From the frequencies of the Si-H stretch, the Si-H bond distance of 1.483 A has been determined for both the equatorial and the axial conformers. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G(d) and 6-311 +/- G(d,p) basis sets at levels of Hartree Fock (RHF) and/or Moller- Plesset with full electron correlation by the perturbation method to the second order (MP2). The results are discussed and compared to those obtained for some similar molecules.  相似文献   

16.
The infrared (3500-30 cm(-1)) spectra of gaseous and solid and the Raman (3500-200 cm(-1)) spectra of the liquid with quantitative depolarization ratios and solid trans-3-chloropropenoyl chloride (trans-ClCHCHCClO) have been recorded. These data indicate that both the anti (carbonyl bond trans to the carbon-carbon double bond) and syn conformers are present in the fluid states but only the anti conformer is present in the crystalline state. The mid-infrared spectra of the sample dissolved in liquid xenon as a function of temperature (-55 to -100 degrees C) have been recorded. Utilizing conformer pairs at 870 and 725 cm(-1), 1215 and 1029 cm(-1), and 1215 and 1228 cm(-1), the enthalpy difference has been determined to be 136+/-5 cm(-1) (389+/-14 cal mol(-1)) with the anti conformer the more stable form. Optimized geometries and conformational stabilities were obtained from ab initio calculations at the levels of RHF/6-31G(d), MP2/6-31G(d), MP2/6-311 + + G(d,p), MP2/6-311 + + G(2d,2p) and MP2/6-311 + + G(2df,2pd) with only the latter two calculations predicting the anti rotamer to be the more stable form. The vibrational frequencies, harmonic force constants and infrared intensities were obtained from the MP2/6-31G(d) calculations, whereas the Raman activities and depolarization values were obtained from the RHF/6-31G(d) calculations. The spectra are interpreted in detail and the results are compared with those obtained for some related molecules.  相似文献   

17.
The conformational stability and vibrational modes of the N-diethylendiamine organic cation (N-DD(2+)) were studied by experimental (Raman) spectroscopy combined with theoretical calculations. Various ab initio theories were used: Hartree-Fock (HF) theory, M?ller-Plesset second-order perturbation (MP2) theory and density functional theory (DFT). Three stable conformers of N-DD(2+), trans-trans, gauche-gauche and gauche-trans were calculated. A comparison between the computed structural parameters of the conformers at both levels of theory and the X-ray data was made. It is demonstrated that the N-DD(2+) cation adopts more probably the gauche-gauche conformation at room temperature. In order to make a more detailed interpretation of the low temperature phase transition of N-DDHP, the Raman spectra of N-DDHP were recorded at room and low temperature in the 200-3400 cm(-1) region. The vibrational frequencies of the different conformers of N-DD(2+) were also calculated using the DFT/B3LYP (6-31G(d)) level of theory. By comparison between the experimental and theoretical results, the conformational dynamic of the N-DD(2+) organic cation was confirmed. It is shown that the N-DD(2+) cation configuration changes from gauche-gauche conformer to gauche-trans conformer when decreasing the temperature.  相似文献   

18.
Variable temperature (-55 to -150 degrees C) studies of the infrared spectra (3200-100 cm(-1)) of cyclopropylmethyl isothiocyanate, c-C(3)H(5)CH(2)NCS, dissolved in liquefied rare gases (Xe and Kr), have been carried out. The infrared spectra of the gas and solid, as well as the Raman spectrum of the liquid, have also been recorded from 3200 to 100 cm(-1). By analyzing six conformer pairs in xenon solutions, a standard enthalpy difference of 228 +/- 23 cm(-1) (2.73 +/- 0.27 kJ.mol(-1)) was obtained with the gauche-cis (the first designation indicates the orientation of the CNCS group with respect to the three-membered ring, the second designation indicates the relative orientation of the NCS group with respect to the bridging C-C bond) rotamer the more stable form, and it is also the only form present in polycrystalline solid. Given statistical weights of 2:1 for the gauche-cis and cis-trans forms (the only stable conformers predicted); the abundance of cis-trans conformer present at ambient temperature is 14 +/- 2%. The potential surface describing the conformational interchange has been analyzed, and the corresponding two-dimensional Fourier coefficients were obtained. From MP2 ab initio calculations utilizing various basis sets with diffuse functions, the gauche-cis conformer is predicted to be more stable by 159-302 cm(-1), which is consistent with the experimental results. However, without diffuse functions, the conformational energy differences are nearly zero even with large basis sets. For calculations with density functional theory by the B3LYP method, basis sets without diffuse functions also predict smaller energy differences between the conformers, although not nearly as small as the MP2 results. A complete vibrational assignment for the gauche-cis conformer is proposed, and several fundamentals for the cis-trans conformer have been identified. The structural parameters, dipole moments, conformational stability, vibrational frequencies, and infrared and Raman intensities have been predicted from ab initio calculations and compared to the experimental values when applicable; the r(0) structural parameters are also estimated. The energies for the linear CNCS moiety were calculated. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

19.
The infrared (3200-30 cm(-1) spectra of gaseous and solid and the Raman spectra of liquid (3200-30 cm(-1), with quantitative depolarization values, and solid vinyldichlorosilane, CH2=CHSiHCl2, have been recorded. Both the gauche and the cis conformers have been identified in the fluid phases. Variable temperature (105-150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data the enthalpy difference has been determined to be 20 +/- 5 cm(-1) (235 +/- 59 J mol(-1) with the gauche conformer the more stable rotamer. It was not possible to obtain a single conformer in the solid even with repeated annealing of the sample. The experimental enthalpy difference is in agreement with the prediction from MP2/6-311 + G(2d,2p) ab initio calculations with full electron correlation. However, when smaller basis sets, i.e. 6-31G(d) and 6-311 + G(d,p) were utilized the cis conformer was predicted to be the more stable form. Complete vibrational assignments are proposed for both conformers based on infrared contours, relative infrared and Raman intensities, depolarization values and group frequencies, which are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. From the frequencies of the Si-H stretches, the Si-H bond distance of 1.474 A has been determined for both the gauche and the cis conformers. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G(d), 6-311 + G(d,p) and 6-311 + (2d,2p) basis sets at level of Hartree-Fock (RHF) and/or Moller Plesset to the second order (MP2) with full electron correlation. The potential energy terms for the conformer interconversion have been obtained from the MP2/6-31G(d) calculations. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

20.
The infrared spectra of 2-chloro-3-fluoro- and 2-bromo-3-fluoro-1-propene as vapours and liquids were recorded in the region 4000–4050 cm?1. Additional spectra of the amorphous and crystalline solids at ?170 °C and of the liquids in polar and non-polar solvents were recorded between 4000 and 200 cm?1.Raman spectra, including semi-quantitative polarization measurements of the liquids were obtained. Spectra were also recorded with the samples dissolved in polar and non-polar solvents, and unannealed as well as annealed crystalline solids were studied at ?180 °C.Approximately 14 vibrational bands present in the spectra of the liquids, solutions and the glassy solids vanished in the infrared and Raman spectra of the crystals. From various criteria it can be concluded with certainty that the more polar (gauche) and less polar (cis) conformers were present in the crystalline chloro- and bromo- compounds, respectively. From infrared and Raman band intensities it was estimated that the conformational equilibrium in chlorofluoro-propene was highly displaced towards cis in the vapour, with both conformers approximately equally abundant in the liquid state (30 °C). For bromofluoro- propene the equilibrium was still further displaced towards the cis conformer.A striking similarity between the spectra of the two compounds was ob- served. The fundamental frequencies have been tentatively assigned and checked by force constant calculations. Dipole moments and relative stabilities of the conformers were estimated by a CNDO calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号