首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial boundary value problem
$ {*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ $ \begin{array}{*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ \end{array}  相似文献   

2.
More work is done to study the explicit, weak and strong implicit difference solution for the first boundary problem of quasilinear parabolic system: $$\begin{gathered} u_t = ( - 1)^{M + 1} A(x,t,u, \cdots ,u_x M - 1)u_x 2M + f(x,t,u, \cdots u_x 2M - 1), \hfill \\ (x,t) \in Q_T = \left| {0< x< l,0< t \leqslant T} \right|, \hfill \\ u_x ^k (0,t) = u_x ^k (l,t) = 0 (k = 0,1, \cdots ,M - 1),0< t \leqslant T, \hfill \\ u(x,0) = \varphi (x),0 \leqslant x \leqslant l, \hfill \\ \end{gathered} $$ whereu, ?, andf arem-dimensional vector valued functions, A is anm×m positively definite matrix, and $u_t = \frac{{\partial u}}{{\partial t}},u_x ^k = \frac{{\partial ^k u}}{{\partial x^k }}$ . For this problem, the convergence of iteration for the general difference schemes is proved.  相似文献   

3.
FINITEDIFFERENCESCHEMESOFTHENONLINEARPSEUDO-PARABOLICSYSTEMDUMINGSHENG(杜明笙)(InstituteofAppliedPhysicsandComputationalMathemat...  相似文献   

4.
A matrix is said to be accretive-dissipative if, in its Hermitian decomposition , both matrices B and C are positive definite. Further, if B= I n, then A is called a Buckley matrix. The following extension of the classical Fischer inequality for Hermitian positive-definite matrices is proved. Let be an accretive-dissipative matrix, k and l be the orders of A 11 and A 22, respectively, and let m = min{k,l}. Then For Buckley matrices, the stronger bound is obtained. Bibliography: 5 titles.  相似文献   

5.
We prove the existence and the uniqueness of a weak solution to the mixed boundary problem for the elliptic-parabolic equation
1, \hfill \\ \end{gathered} $$ " align="middle" vspace="20%" border="0">
with a monotone nondecreasing continuous function b. Such equations arise in the theory of non-Newtonian filtration as well as in the mathematical glaciology. Bibliography: 16 titles.  相似文献   

6.
Suppose a, b, and are reals witha<b and consider the following diffusion equation
  相似文献   

7.
We establish the partial C1,α-regularity of weak solutions of nonhomogeneous nonuniformly elliptic systems of the type $$ - \frac{\partial }{{\partial x_\alpha }}A_\alpha ^i (x,u,u_x ) = B^i (x,u,u_x ),{\text{ }}i = 1,...,n$$ . The system of Euler equations of the variational problem of finding a minimum of the integral $\int\limits_\Omega {\mathcal{F}(u_x )dx} $ with an integrand of the type $$\mathcal{F}(p) = a|p|^2 + b|p|^m + \sqrt {1 + \det ^2 p,} {\text{ }}a > 0,{\text{ }}b > 0$$ , for b large enough, is a typical example of systems under consideration. Bibliography: 11 titles.  相似文献   

8.
Let u and solve the problem
where is an open set in 0\} ,n \geqslant 2,H = \Delta - \partial _t \hfill \\ \hfill \\ \end{gathered} $$ " align="middle" border="0"> is the heat operator, denotes the characteristic function of , is the unit cylinder in n+1, , and the first equation is satisfied in the sense of distributions. We obtain the optimal regularity of the function u, i.e., we show that . Bibliography: 6 titles.  相似文献   

9.
Rudykh  G. A.  Semenov  É. I. 《Mathematical Notes》2001,70(5-6):714-719
In this paper, we obtain new exact non-self-similar solutions of the nonlinear diffusion equation $$\begin{gathered} {\text{ }}u_t = \Delta \ln u, \hfill \\ u \triangleq u\left( {x,t} \right):\Omega \times \mathbb{R}^ + \to \mathbb{R},{\text{ }} x \in \mathbb{R}^n , \hfill \\ \end{gathered} $$ where $\Omega \subset \mathbb{R}^n $ is the domain and $\mathbb{R}^ + = \left\{ {t:0 \leqslant t < + \infty } \right\},{\text{ }}u\left( {x,t} \right) \geqslant 0$ is the temperature of the medium.  相似文献   

10.
For 2-periodic functions and arbitrary q [1, ] and p (0, ], we obtain the new exact Kolmogorov-type inequality which takes into account the number of changes in the sign of the derivatives (x (k)) over the period. Here, = (rk + 1/q)/(r + 1/p), r is the Euler perfect spline of degree r, and . The inequality indicated turns into the equality for functions of the form x(t) = a r (nt + b), a, b R, n N. We also obtain an analog of this inequality in the case where k = 0 and q = and prove new exact Bernstein-type inequalities for trigonometric polynomials and splines.  相似文献   

11.
On the basis of the exact solution of the linear Dirichlet problem , we obtain conditions for the solvability of the corresponding Dirichlet problem for the quasilinear equation u ttu xx = f(x, t, u, u t).  相似文献   

12.
This paper concerns the study of the numerical approximation for the following initialboundary value problem
$ \left\{ \begin{gathered} u_t - u_{xx} = f\left( u \right), x \in \left( {0,1} \right), t \in \left( {0,T} \right), \hfill \\ u\left( {0,t} \right) = 0, u_x \left( {1,t} \right) = 0, t \in \left( {0,T} \right), \hfill \\ u\left( {x,0} \right) = u_0 \left( x \right), x \in \left[ {0,1} \right], \hfill \\ \end{gathered} \right. $ \left\{ \begin{gathered} u_t - u_{xx} = f\left( u \right), x \in \left( {0,1} \right), t \in \left( {0,T} \right), \hfill \\ u\left( {0,t} \right) = 0, u_x \left( {1,t} \right) = 0, t \in \left( {0,T} \right), \hfill \\ u\left( {x,0} \right) = u_0 \left( x \right), x \in \left[ {0,1} \right], \hfill \\ \end{gathered} \right.   相似文献   

13.
We discuss the existence of global classical solution for the uniformly parabolic equation
  相似文献   

14.
The purpose of this paper is to obtain oscillation criteria for the differential system
  相似文献   

15.
We consider the first-order Cauchy problem
$ \begin{gathered} \partial _z u + a(z,x,D_x )u = 0,0 < z \leqslant Z, \hfill \\ u|_{z = 0} = u_0 , \hfill \\ \end{gathered} $ \begin{gathered} \partial _z u + a(z,x,D_x )u = 0,0 < z \leqslant Z, \hfill \\ u|_{z = 0} = u_0 , \hfill \\ \end{gathered}   相似文献   

16.
This paper is concerned with the Cauchy problem for the nonlinear parabolic equation $${\partial _t}u| = \vartriangle u + F(x,t,u,\nabla u){\text{ in }}{{\text{R}}^N} \times (0,\infty ),{\text{ }}u(x,0) = \varphi (x){\text{ in }}{{\text{R}}^N},$$ , where $$\begin{gathered} N \geqslant 1, \hfill \\ F \in C(R^N \times (0,\infty ) \times R \times R^N ), \hfill \\ \phi \in L^\infty (R^N ) \cap L^1 (R^N ,(1 + |x|^K )dx)forsomeK \geqslant 0 \hfill \\ \end{gathered} $$ . We give a sufficient condition for the solution to behave like a multiple of the Gauss kernel as t → ∞ and obtain the higher order asymptotic expansions of the solution in W 1,q (R N ) with 1 ≤ q ≤ ∞.  相似文献   

17.
This paper deals with the existence and the behaviour of global connected branches of positive solutions of the problem
We consider a function h which is smooth and changes sign.  相似文献   

18.
This paper is concerned with a nonlocal hyperbolic system as follows utt = △u + (∫Ωvdx )^p for x∈R^N,t〉0 ,utt = △u + (∫Ωvdx )^q for x∈R^N,t〉0 ,u(x,0)=u0(x),ut(x,0)=u01(x) for x∈R^N,u(x,0)=u0(x),ut(x,0)=u01(x) for x∈R^N, where 1≤ N ≤3, p ≥1, q ≥ 1 and pq 〉 1. Here the initial values are compactly supported and Ω belong to R^N is a bounded open region. The blow-up curve, blow-up rate and profile of the solution are discussed.  相似文献   

19.
We study nonnegative solutions of the initial value problem for a weakly coupled system
  相似文献   

20.
A semilinear parabolic system in a bounded domain   总被引:1,自引:0,他引:1  
Consider the system
0, x \in \Omega \} , \hfill \\ v_t - \Delta v = u^q , in Q , \hfill \\ u(0, x) = u_0 (x) v(0, x) = v_0 (x) in \Omega , \hfill \\ u(t, x) = v(t, x) = 0 , when t \geqslant 0, x \in \partial \Omega , \hfill \\ \end{gathered} \right.$$ " align="middle" vspace="20%" border="0">  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号