首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
搭建了一套兼具承压和可视性能粉尘爆炸实验平台,在压力积聚工况下实验研究了石松子粉尘爆炸火焰传播特性。实验结果表明:压力积聚工况下的石松子粉尘爆炸火焰呈现空间离散的束状结构,火焰锋面呈齿状。随着粉尘浓度的提升,火焰连续性增强,锋面趋于平滑,亮度增加,并在750g/m^3达到最佳。不同浓度条件下的石松子粉尘爆炸火焰在传播过程中均呈现明显的速度脉动特征,但脉动频率随粉尘浓度的增大而减小。爆炸火焰平均传播速度随粉尘浓度的增大先增大后减小,并在750g/m^3达到最高。不同浓度条件下的石松子粉尘爆炸火焰前期传播速度均高于后期传播速度。  相似文献   

2.
采用20 L近球形爆炸实验系统对锆粉尘云的爆炸特性开展了实验研究,分别分析了初始点火能量、点火延迟时间、粉尘云浓度3种因素对锆粉尘云爆炸强度的影响,揭示了锆粉尘云在密闭容器中的爆炸特性。在本实验条件下,结果表明:初始点火能量对锆粉尘云最大爆炸压力有显著影响,锆粉尘云最大爆炸压力随初始点火能量的增大而增大;随点火延迟时间的增加,锆粉尘云最大爆炸压力先增大后减小,存在最佳点火延迟时间;随粉尘云浓度的增大,锆粉尘云最大爆炸压力先增大后减小,存在最佳锆粉尘云浓度,得到锆粉尘云的爆炸下限为18~20 g/m3。  相似文献   

3.
为了研究装置点火延迟时间对不同浓度粉尘爆炸压力和压力上升速率的影响,以铝粉为介质在5L圆柱形爆炸装置中进行系列爆炸实验。结果表明:装置点火延迟时间对铝粉爆炸压力和压力上升速率有十分显著的影响,且存在一个最佳点火延迟时间,此时最大爆炸压力最大;随着铝粉浓度的增加,最佳点火延迟时间先增加后保持不变。最佳点火延迟时间下的最大爆炸压力和最大压力上升速率明显高于点火延迟时间固定为60s时的。相对粉尘不同浓度均采用固定点火延迟时间,不同浓度时采用最佳点火延迟时间,所测得的粉尘最大爆炸压力和最大压力上升速率明显符合实际。  相似文献   

4.
为防控工业粉尘爆炸和完善粉尘爆炸测试方法,在Siwek20L球形爆炸测试系统内,实验研究了 不同点火能量下高、低挥发性粉尘的爆炸行为。对粉尘爆炸猛度(最大爆炸压力、最大升压速率和燃烧持续时 间)、敏感度(爆炸下限)及惰性介质的抑爆效力随点火能量的变化规律进行了重点探讨。结果表明,增加点火 能量能提高粉尘云爆炸能量和燃烧速率,低挥发性粉尘爆炸行为受点火能量的影响更显著。低挥发性粉尘在 低质量浓度下无法被低点火能量充分引燃,爆炸不良效应显著;随着粉尘质量浓度的增加,爆炸不良效应不 断减弱直至消失。低挥发性粉尘爆炸下限随点火能量增加急剧下降,而高挥发性粉尘爆炸下限受点火能量影 响较小。惰性介质抑爆效力随点火能量增加而下降。建议采用5~10kJ点火能量考察低挥发性粉尘爆炸下 限及惰性介质对粉尘爆炸的抑制效力。研究结果有助于理解粉尘爆炸规律、完善测试方法和安全设计。  相似文献   

5.
基于RGB颜色模型的玉米淀粉爆燃火焰传播速度   总被引:1,自引:0,他引:1  
采用小尺度粉尘爆炸实验装置对不同质量浓度的玉米淀粉爆燃火焰传播过程进行了实验研究,建立了基于RGB颜色模型的火焰重构及形态学重建的粉尘火焰传播速度计算方法,计算了不同质量浓度下的玉米淀粉爆燃火焰传播速度。结果表明:采用基于RGB颜色模型的速度计算方法能够快速准确地计算出玉米淀粉爆燃火焰传播速度,火焰像素范围的确定是火焰速度计算的关键;管道内火焰传播速度受粉尘云质量浓度的影响,最大火焰传播速度随粉尘云质量浓度的增大先增大后减小,到达速度峰值的时间先缩短后增长,当质量浓度为0.63 kg/m3时,出现该实验条件下火焰传播速度最大值7.03 m/s。  相似文献   

6.
在矩形管道粉尘爆炸装置中开展系列实验,系统研究了点火延迟时间、粉尘粒度及粉尘浓度对铝粉尘爆炸过程中最大爆炸压力和最大爆炸压力上升速率的影响。研究结果表明:不同的点火延迟时间对铝粉尘爆炸压力有显著影响,随着点火延迟时间由小变大,最大爆炸压力和最大爆炸压力上升速率呈现先增大后减小的趋势,且不同粒径的铝粉尘最大爆炸压力对应有不同点火延迟时间。随铝粉粒度的减小,最大爆炸压力和最大爆炸压力上升速率会呈现出先增大后减小的变化规律。铝粉最大爆炸压力和最大爆炸压力上升速率随浓度的增加均表现为先变大后减小的趋势,即铝粉浓度在特定数值时会使其爆炸威力最强。  相似文献   

7.
以2m 铝粉为介质,在内径68mm、高305mm 的钢制圆柱容器顶端连接内径25mm、不同长度 的钢制泄爆管,开展了粉尘爆炸泄放实验。通过分别改变泄爆管长度及粉尘的质量浓度,研究粉尘爆炸泄放 过程中容器及泄爆管内的压力特性,重点在探索泄放过程中二次爆炸发生的条件。结果表明,在本实验条件 下,当泄爆管长度LT1500mm,粉尘质量浓度500g/m3 时,泄爆管内发生二次爆炸的几率很高。二次 爆炸产生的压力波分别向爆炸容器及泄爆管末端2个方向传播。向爆炸容器传播的压力波阻碍并扰乱泄放 过程,导致容器内残余未燃粉尘反应,使容器内压力出现二次峰值。  相似文献   

8.
本文研究了扬尘湍流、铝粉浓度、颗粒度和气相中氧浓度等因素对铝粉爆炸特性的影响。研究结果表明,铝粉颗粒度对铝粉爆炸有十分明显的影响。颗粒度越小,其它因素对铝粉爆炸的影响也越明显。在粉尘爆炸中,较强的扬尘湍流能够使更多粉尘悬浮,有利于粉尘的燃烧并且加快了其燃烧速率。  相似文献   

9.
铝粉爆炸特性的实验研究   总被引:3,自引:0,他引:3  
本文研究了扬尘湍流、铝粉浓度、颗粒度和气相中氧浓度等因素对铝粉爆炸特性的影响。研究结果表明,铝粉颗粒度对铝粉爆炸有十分明显的影响。颗粒度越小,其它因素对铝粉爆炸的影响也越明显。在粉尘爆炸中,较强的扬尘湍流能够使更多粉尘悬浮,有利于粉尘的燃烧并且加快了其燃烧速率。  相似文献   

10.
基于改进的20 L球形粉尘爆炸装置,在相同初始条件下分别测量了甲烷、石松子粉尘和甲烷/石松子两相混合体系的爆炸压力、爆炸压力上升速率和爆炸指数等参数,系统研究了甲烷/石松子粉尘两相混合体系爆炸特性变化规律。结果表明:甲烷的添加能显著提高低质量浓度石松子粉尘爆炸压力而降低高质量浓度石松子粉尘爆炸压力;甲烷对石松子粉尘最大爆炸压力没有显著影响,但能显著提高石松子粉尘最大爆炸压力上升速率。甲烷/石松子粉尘混合体系爆炸指数高于单相石松子粉尘爆炸指数,但甲烷/石松子粉尘混合体系和单相石松子粉尘爆炸指数均低于单相甲烷爆炸指数。工业生产过程中应避免粉尘混入可燃气体以降低粉尘爆炸危险性。  相似文献   

11.
微细球形铝粉爆炸特性的实验研究   总被引:3,自引:1,他引:3  
从工业安全角度出发,在三种不同实验装置上对五种粒度(直径由3~30m)的球形铝粉的爆炸特性进行了全面、系统的实验研究。研究结果主要给出了铝粉在封闭容器的爆炸过程中,其粉末浓度、粒度、含氧量和初始扬尘湍度强度对爆炸后的最大压力升值、最大能量释放率和最低极限着火粉尘浓度的影响。结果表明:铝粉粒度和含氧量是对铝粉爆炸参数有最主要影响的两个因素。  相似文献   

12.
粉尘质量浓度是粉尘爆炸的关键因素,针对目前对本质安全、可实时监测预警的粉尘质量浓度测量技术的迫切需求,提出一种基于光纤光栅和光纤准直器的新型测量技术,在阐述其测量理论的基础上,搭建测量和实验装置实物。对200、300和400目这3种粒径规格的小麦粉尘分别开展实验测量,结果表明:所提出的测量技术的光功率输出和粉尘质量浓度呈线性关系;并与标准的称重法得到的粉尘质量浓度开展对比,验证了光纤光栅测量技术的有效性。  相似文献   

13.
为探索甲烷体积分数对聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)/甲烷混合爆炸下限及预热区厚度的影响,采用半封闭可视化实验装置研究甲烷/PMMA粉尘混合爆炸火焰传播过程。结果发现,随着甲烷体积分数增加,平均粒径为28和54μm的粉尘爆炸下限逐渐降低,平均粒径为54μm的粉尘混合爆炸预热区厚度增大,28μm粉尘混合爆炸预热区厚度基本不变。爆炸下限的降低是由于甲烷与PMMA粉尘存在协同作用;28μm粉尘混合爆炸的预热区厚度不变表明28μm粒子在预热区中完全裂解气化与甲烷气体形成均相的气体预热区。此外,在甲烷体积分数相同时,粉尘质量浓度的增加使得火焰传播速度增大。而在组合当量比一定的条件下,粉尘质量浓度的增加并未使得混合爆炸火焰传播速度增大,而是出现一定的波动变化。  相似文献   

14.
密闭空间煤粉的爆炸特性   总被引:4,自引:0,他引:4  
高聪  李化  苏丹  黄卫星 《爆炸与冲击》2010,30(2):164-168
利用ISO6184/1和IEC推荐的20L球型爆炸测试装置,对4种规格的煤粉进行了系统的粉尘爆炸实验,探讨了煤粉的爆炸规律。得到了样品的爆炸下限浓度、最大爆炸压力,最大爆炸压力上升速率变化规律;分析了浓度、粒径、点火能量对煤粉爆炸猛烈度的影响。结果表明,粒径越小的煤粉,爆炸下限越小,而且在指定浓度下爆炸越猛烈。随着浓度的增大,最大爆炸压力和上升速率先增后减。样品3,峰值爆炸压力对应的浓度为400~1000g/m3,爆炸压力最大值为0.54MPa;点火头能量的增大在一定程度上促使反应更充分,从而爆炸强度更强。由于煤粉组成的特点,实验数据一定程度上说明了爆炸过程中气相燃烧的重要作用。 更多还原  相似文献   

15.
在水平粉尘爆轰管上分别对2m、5m和13m三种粒径的铝粉-空气混合物进行了弱点火条件下燃烧转爆轰的实验研究。实验分别考察了粉尘浓度、颗粒尺度及扬尘方法等因素对爆轰特性(如爆轰速度、最大压力等)的影响。结果表明,2m球形铝粉最大爆轰压力达7.8MPa、稳态爆速达1.95km/s;5m铝粉亦有爆轰特征,但状态较弱;13m的铝粉达不到爆轰。混合物的浓度对爆轰参数有影响,并存在最优浓度,在此浓度下,爆轰参数取得最大值,而且最优浓度的值随粉尘颗粒直径增加而增大。扬尘方法对爆轰特性有影响,预混粉尘与激波卷扬粉尘对比实验表明,其压力与速度的典型差别分别高达300%与74%。  相似文献   

16.
武林湲  于立富  王天枢  孙威  徐建航  李航 《爆炸与冲击》2022,42(1):015401-1-015401-10
为探究油页岩粉尘的爆炸特性,以龙口(Longkou, LK)、茂名(Maoming, MM)、桦甸(Huadian, HD)和抚顺(Fushun, FS)4种油页岩粉尘为研究对象,采用20 L球形爆炸装置,对这4种油页岩粉尘样品开展系统的爆炸实验,探讨油页岩粉尘的粉尘云质量浓度、粒径、挥发分、灰分、氧含量等对其爆炸特性的影响。结果表明:挥发分含量越高,油页岩粉尘的最大爆炸压力pmax、最大压力上升速率(dp/dt)max越高,爆炸下限越低;挥发分和灰分对油页岩粉尘云爆炸分别有显著的促进和抑制作用。在37.52~106.43 μm粒径范围内,这4种油页岩粉尘样品的pmax和(dp/dt)max均随其粉尘粒径的增大而降低,且到达最大爆炸压力的时间逐步缩短,说明小粒径油页岩粉尘较高的脱挥发速率能提高爆炸的反应程度。当粉尘质量浓度在400~2 500 g/m3范围内时,pmax和(dp/dt)max均随粉尘云质量浓度的升高呈现先升高后降低的变化趋势,高于最佳粉尘云质量浓度(1 000 g/m3)时略有下降,但维持在较高水平,表明超过最佳质量浓度的粉尘云引燃后仍有较强的破坏力;LK样品的pmax和(dp/dt)max均最高,分别为0.61 MPa和29.32 MPa/s,与挥发分含量相当的褐煤在同一水平,其爆炸下限为200 g/m3,在4种样品中最低,高于挥发分含量相当的褐煤;在N2惰化条件下,LK样品的pmax和(dp/dt)max均随环境氧含量的降低而降低,当氧含量降至15%时,系统不再发生爆炸,极限氧含量为16%。  相似文献   

17.
罗鑫  龚小兵  张丹  巫亮  魏泳涛 《力学季刊》2019,40(2):343-352
基于DPM(Discrete Phase Model)模型,研究了长直通风管道内粒径服从Rosin-Rammler 分布的铝粉的运移与沉积规律.基于颗粒与壁面的碰撞过程中的能量分析,建立了粉尘沉积-回弹模型,得出了粉尘沉积的判定准则及脱离壁面时的回弹速度.利用UDF 将沉积-回弹模型嵌入Fluent,完成了对管道内粉尘运移和沉积的数值模拟.粉尘沉积的数值结果与实验结果符合得较好,验证了所提模型的有效性.数值结果表明风速的增大使管道内粉尘浓度明显降低,管壁粉尘沉积率也降低;粒径的增大对粉尘浓度的大小影响不明显,主要影响粉尘浓度在管道内的分布情况,同时会增大粉尘在管壁的沉积率.  相似文献   

18.
铝粉-空气混合物燃烧转爆轰(DDT)过程的实验研究   总被引:1,自引:0,他引:1  
在水平粉尘爆轰管上分别对2μm、5μm和13μm三种粒径的铝粉-空气混合物进行了弱点火条件下燃烧转爆轰的实验研究。实验分别考察了粉尘浓度、颗粒尺度及扬尘方法等因素对爆轰特性(如爆轰速度、最大压力等)的影响。结果表明,2μm球形铝粉最大爆轰压力达7.8MPa、稳态爆速达1.95km/s;5μm铝粉亦有爆轰特征,但状态较弱;13μm的铝粉达不到爆轰。混合物的浓度对爆轰参数有影响,并存在最优浓度,在此浓度下,爆轰参数取得最大值,而且最优浓度的值随粉尘颗粒直径增加而增大。扬尘方法对爆轰特性有影响,预混粉尘与激波卷扬粉尘对比实验表明,其压力与速度的典型差别分别高达300%与74%。  相似文献   

19.
采用20 L近球形粉尘爆炸实验系统,探究微米级铝粉在不同点火延迟时间、粉尘粒径及粉尘浓度下的爆炸特性规律。结果表明:当点火延迟时间在20~120 ms范围内,铝粉最大爆炸压力和最大爆炸压力上升速率先增大后减小,随铝粉粒径增大,最佳点火延迟时间增大;在任一点火延迟时间下,粒径大于8.12 μm的铝粉最大爆炸压力随粉尘粒径的减小呈增大的变化趋势;粒径大于8.12 μm的铝粉,在80~440 g/m3粉尘浓度范围内,铝粉最大爆炸压力和最大爆炸压力上升速率先增大后减小,且铝粉粒径越小,对应的最猛烈爆炸粉尘浓度越低。  相似文献   

20.
本文回顾了粉尘爆炸实验的各种装置.按粉尘颗粒和气流的运动方式进行分类.同时,对每一类实验装置的优缺点及各类实验装置所得到结果的合理性进行了分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号