首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ductile fracture behavior of two-dimensional imperfect lattice material under dynamic stretching is studied by finite element method using ABAQUS/Explicit code. The simulations are performed with three isotopic lattice materials: the regular hexagonal honeycomb, the Kagome lattice and the regular triangular lattice. All the three lattices are made of an elastic/visco-plastic metal material. Two typical imperfections: vacancy defect and rigid inclusion are introduced separately. The numerical results reveal novel deformation modes and crack growth patterns in the ductile fracture of lattice material. Various crack growth patterns as defined according to their profiles, “X”-type, “Butterfly”-type, “Petal”-type, are observed in different combinations of imperfection type and lattice topology. Crack propagation could induce severe material softening and deduce the plastic dissipation of the lattices. Subsequently, the effects of the strain rate, relative density, microstructure topology, and defect type on the crack growth pattern, the associated macroscopic material softening and the knock-down of total plastic dissipation are investigated.  相似文献   

2.
The fracture toughness of elastic-brittle 2D lattices is determined by the finite element method for three isotropic periodic topologies: the regular hexagonal honeycomb, the Kagome lattice and the regular triangular honeycomb. The dependence of mode I and mode II fracture toughness upon relative density is determined for each lattice, and the fracture envelope is obtained in combined mode I-mode II stress intensity factor space. Analytical estimates are also made for the dependence of mode I and mode II toughness upon relative density. The high nodal connectivity of the triangular grid ensures that it deforms predominantly by stretching of the constituent bars, while the hexagonal honeycomb deforms by bar bending. The Kagome microstructure deforms by bar stretching remote from the crack tip, and by a combination of bar bending and bar stretching within a characteristic elastic deformation zone near the crack tip. This elastic zone reduces the stress concentration at the crack tip in the Kagome lattice and leads to an elevated macroscopic toughness.Predictions are given for the tensile and shear strengths of a centre-cracked panel with microstructure given explicitly by each of the three topologies. The hexagonal and triangular honeycombs are flaw-sensitive, with a strength adequately predicted by linear elastic fracture mechanics (LEFM) for cracks spanning more than a few cells. In contrast, the Kagome microstructure is damage tolerant, and for cracks shorter than a transition length its tensile strength and shear strength are independent of crack length but are somewhat below the unnotched strength. At crack lengths exceeding the transition value, the strength decreases with increasing crack length in accordance with the LEFM estimate. This transition crack length scales with the parameter of bar length divided by relative density of the Kagome grid, and can be an order of magnitude greater than the cell size at low relative densities. Finally, the presence of a boundary layer is noted at the free edge of a crack-free Kagome grid loaded in tension and in shear. Deformation within this boundary layer is by a combination of bar bending and stretching whereas remote from the free edge the Kagome grid deforms by bar stretching (with a negligible contribution from bar bending). The edge boundary layer degrades both the macroscopic stiffness and strength of the Kagome plate. No such boundary layer is evident for the hexagonal and triangular honeycombs.  相似文献   

3.
格栅结构力学性能研究进展   总被引:5,自引:1,他引:4  
格栅复合材料是一种新型轻质高强材料. 综述了格栅复合材料的周期构型特征和格栅结构的制备工艺. 归纳了二维周期格栅材料的等效刚度矩阵计算方法, 比较了不同构型格栅的基本力学性能, 介绍了胞元材料的微极弹性理论和格栅的强度与屈服面计算方法. 探讨了格栅的缺陷及其力学响应, 包括格栅的尺度效应、夹杂缺陷以及裂纹扩展特征, 介绍了波在格栅材料中传播机理的最新研究成果. 根据格栅材料在工程中的应用形式, 分类介绍了格栅板壳结构、格栅加筋板壳结构和格栅夹层结构的结构特点和破坏方式、设计优化准则和实验研究成果. 还归纳了作者所在研究小组近期在碳纤维格栅复合材料的制备、实验研究和理论分析等方面的最新工作进展.   相似文献   

4.
The imperfection sensitivity of in-plane modulus and fracture toughness is explored for five morphologies of 2D lattice: the isotropic triangular, hexagonal and Kagome lattices, and the orthotropic 0/90° and ±45° square lattices. The elastic lattices fail when the maximum local tensile stress at any point attains the tensile strength of the solid. The assumed imperfection comprises a random dispersion of the joint position from that of the perfect lattice. Finite element simulations reveal that the knockdown in stiffness and toughness are sensitive to the type of lattice: the Kagome and square lattices are the most imperfection sensitive. Analytical models are developed for the dependence of modes I and II fracture toughness of the 0/90° and ±45° lattices upon relative density. These models explain why the mode II fracture toughness of the 0/90° lattice has an unusual functional dependence upon relative density.  相似文献   

5.
钱岳强  邱信明  张雄 《力学学报》2008,40(6):826-833
分析了Kagome格栅的等效刚度和屈服面. 其屈服面奇异,由4段直线围成. 利用该屈服面,估算了Kagome具有I型、II型半无限大裂纹的裂尖塑性区,有限元计算验证了解析预测的准确性. 与奇异屈服面相比,由Mises光滑屈服面给出的塑性区误差较大. 因此只有弹性情况,可以将Kagome等效为各向同性;若材料塑性,或应力场奇异性较强,Kagome的强度依赖于主应力方向,不能用各向同性模型来描述.   相似文献   

6.
Lattice materials have been attractive over the last decade for use as load-carrying structures, energy absorbing elements and heat exchanging structures because of their excellent mechanical properties and multifunctional characters. However, the quantitative analysis accounting for high order deformations upon the collapse of lattice materials, which is important for their applications, has not been reported. An analytical investigation of yield surfaces with respect to the high order deformations was carried out for two typical planar lattice materials: triangular and Kagome lattices separately. The analytical results were validated by the finite element method (FEM) simulations. It was found that the effect of high order deformation on the yield strength increases with the relative density. The bending effect of the Kagome lattice is more obvious than that of the triangular one with the same relative density and stress state. The yield strength of the Kagome lattice calculated by neglecting the bending effect overestimates the result by more than 10% when the relative density is higher than about 11.1%, which may not be ignored in engineering applications. The yielding surfaces of the two lattice materials demonstrated in the paper also confirm the analytical results.  相似文献   

7.
The defect interaction and reinforcement of imperfect two-dimensional lattice materials are studied by theoretical investigations and finite element (FE) simulations. An analytical model is proposed to predict the interaction of two defects in lattice materials based on a single defect model. An interaction coefficient is introduced to characterize the degree of interaction. The effects of defect type and defect distance on interaction coefficients are studied. The critical interaction distance of defects, beyond which the interaction of two defects can be neglected, is derived. FE calculations are performed to validate the theoretical model. The simulated results indicate that increasing the number of defects can reduce the stress concentration rather than weakening the strength of the residual parts in certain circumstances. Subsequently, several reinforcement methods are proposed to reduce the stress concentration in the triangular and Kagome lattice for the single-bar-missing defect and single-joint-missing defect. An analytical model is developed for the reinforced lattices, and the predicted stress concentration factors are in good agreement with those of FE simulations. By theoretical studies and FE simulations, optimal reinforcement methods are derived for the triangular and Kagome lattice under planar loading conditions.  相似文献   

8.
Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress–strain curves of human skins. The underlying relations between the J-shaped stress–strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress–strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress–strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress–strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress–strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions.  相似文献   

9.
Matrix methods of linear algebra are used to analyse the structural mechanics of the periodic pin-jointed truss by application of Bloch's theorem. Periodic collapse mechanisms and periodic states of self-stress are deduced from the four fundamental subspaces of the kinematic and equilibrium matrix for the periodic structure. The methodology developed is then applied to the Kagome lattice and the triangular-triangular (T-T) lattice. Both periodic collapse mechanisms and collapse mechanisms associated with uniform macroscopic straining are determined. It is found that the T-T lattice possesses only macroscopic strain-producing mechanisms, while the Kagome lattice possesses only periodic mechanisms which do not generate macroscopic strain. Consequently, the Kagome lattice can support all macroscopic stress states. The macroscopic stiffness of the Kagome and T-T trusses is obtained from energy considerations. The paper concludes with a classification of collapse mechanisms for periodic lattices.  相似文献   

10.
Lattice solids are being contemplated for use in prospective lightweight structural applications. Hence, the understanding of their mechanical behavior is essential. In this work, the tensile behavior of the triangular (T), hexagonal (H) and Kagome (K) planar lattices containing notches is explored using FE-based progressive failure analysis. As an elastic-brittle material is assumed for the struts, they fail in rupture. The effects of notch-length and relative density are examined. Computations show a dramatic decrease of both stiffness and strength of the lattices with increasing the notch-length. For the relative density, the opposite effect is ascertained. Fracture patterns are found to depend only on the topology of the lattices. T- and K-lattice show a similar and much stronger behavior than the H-lattice.Using the same numerical method, the bending behavior of the shape-morphing Kagome-structure (KS) is simulated in regard of the different materials used in the members of the structure. Failure analysis of the KS involves progression of yielding and initiation of buckling in the face-sheet and struts. It was found that the bending rigidity of the KS is governed by the stiffness of the material of the face-sheet while the material of the core determines whether yielding or buckling will initiate first.  相似文献   

11.
零能模式超材料指弹性矩阵的特征值中有若干为零的弹性材料,根据零特征值的个数可将其分类为一模至五模材料。当前,针对五模材料已有较深入研究,并在水声和弹性波调控方面获得重要应用,而对其他类型零能模式材料的研究尚未展开。本文对扭曲Kagome周期桁架这样一类欠约束点阵材料的有效弹性性质进行了研究,结果表明通过调节点阵材料的微观几何构型和杆件刚度,该类结构能够涵盖一系列一模材料谱系。针对给定一模弹性张量,发展了软-硬模式分离的微结构逆向优化设计策略。通过特定一模材料中的波传播现象对有效性质预测和微结构设计进行了数值验证。  相似文献   

12.
<正>Absolute phononic band gaps can be substantially improved in two-dimensional lattices by using a symmetry reduction approach.In this paper,the propagation of elastic waves in a two-dimensional hybrid triangular lattice structure consisting of stainless steel cylinders in air is investigated theoretically.The band structure is calculated with the plane wave expansion (PWE)method.The hybrid triangular Bravais lattice is formed by two kinds of triangular lattices. Different from ordinary triangular lattices,the band gap opens at low frequency(between the first and the second bands)regime because of lifting the bands degeneracy at high symmetry points of the Brillouin zone.The location and width of the band gaps can be tuned by the position of the additional rods.  相似文献   

13.
The relationships between a slip system in the parent lattice and its transform by twinning shear are considered in regards to tangential continuity conditions on the plastic distortion rate at twin/parent interface. These conditions are required at coherent interfaces like twin boundaries, which can be assigned zero surface-dislocation content. For two adjacent crystals undergoing single slip, relations between plastic slip rates, slip directions and glide planes are accordingly deduced. The fulfillment of these conditions is investigated in hexagonal lattices at the onset of twinning in a single slip deforming parent crystal. It is found that combinations of slip system and twin variant verifying the tangential continuity of the plastic distortion rate always exist. In all cases, the Burgers vector belongs to the interface. Certain twin modes are only admissible when slip occurs along an 〈a〉 direction of the hexagonal lattice, and some others only with a 〈c + a〉 slip. These predictions are in agreement with EBSD orientation measurements in commercially pure Ti sheets after plane strain compression.  相似文献   

14.
Two novel statically indeterminate planar lattice materials are designed: a new Kagome cell (N-Kagome) and a statically indeterminate square cell (SI-square). Their in-plane mechanical properties, such as stiffness, yielding, buckling and collapse mechanisms are investigated by analytical methods. The analytical stiffness is also verified by means of finite element (FE) simulations. In the case of uniaxial loading, effective modulus, yield strength, buckling strength and critical relative density are compared for various lattice structures. At a critical relative density, the collapse mode will change from buckling to yielding. Elastic buckling under macroscopic shear loading is found to have significant influence on failure of lattice structures, especially at low relative densities. Comparison of the analytical bulk and shear moduli with the Hashin–Shtrikman bounds indicates that the mechanical properties of the SI-square honeycomb are relatively close to being optimal. It is found that compared with the other existing stretching-dominated 2D lattice structures, the N-Kagome cell possesses the largest continuous cavities for fixed relative densities and wall thicknesses, which is convenient for oil storage, disposal of heat exchanger, battery deploying and for other functions. And the initial yield strength of the N-Kagome cell is slightly lower than that of the Kagome cell. The SI-square cell has similar high stiffness and strength as the mixed cell while its buckling resistance is about twice than that of the mixed cell.  相似文献   

15.
The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in which, both the in-plane (with respect to the lattice plane) and out-of-plane waves are considered. The dispersion relations are obtained by calculating the Bloch eigenfrequencies and eigenmodes. The frequency bandgaps are observed and the influence of the elastic and geometric properties of the primitive cell on the bandgaps is studied. By analyzing the phase and the group velocities of the Bloch wave modes, the anisotropic behaviors and the dispersive characteristics of the hexagonal beam lattice with respect to the wave prop- agation are highlighted in high frequency domains. One im- portant result presented herein is the comparison between the first Bloch wave modes to the membrane and bend- ing/transverse shear wave modes of the classical equivalent homogenized orthotropic plate model of the hexagonal beam lattice. It is shown that, in low frequency ranges, the homog- enized plate model can correctly represent both the in-plane and out-of-plane dynamic behaviors of the beam lattice, its frequency validity domain can be precisely evaluated thanks to the Bloch modal analysis. As another important and original result, we have highlighted the existence of the retro- propagating Bloch wave modes with a negative group veloc- ity, and of the corresponding "retro-propagating" frequency bands.  相似文献   

16.
In this paper we study analytically the elastic properties of the 2-D and 3-D regular lattices consisting of bonded particles. The particle-scale stiffnesses are derived from the given macroscopic elastic constants (i.e. Young's modulus and Poisson's ratio). Firstly a bonded lattice model is presented. This model permits six kinds of relative motion and corresponding forces between each bonded particle pair. By comparing the strain energy distributions between the discrete lattices and the continuum, the explicit relationship between the microscopic and macroscopic elastic parameters can be obtained for the 2-D hexagonal lattice and the 3-D hexagonal close-packed and face-centered cubic structures. The results suggest that the normal stiffness is determined by Young's modulus and the particle size (in 3-D), and that the ratio of the shear to normal stiffness is related to Poisson's ratio. Rotational stiffness depends on the normal stiffness, shear stiffness and particle sizes. Numerical tests are carried out to validate the analytical results. The results in this paper have theoretical implications for the calibration of the spring stiffnesses in the Discrete Element Method.  相似文献   

17.
This paper presents an attempt to extend homogenization analysis for the effective elastic moduli of triangular lattice materials with microstructural defects. The proposed homogenization method adopts a process based on homogeneous strain boundary conditions, the micro-scale constitutive law and the micro-to-macro static operator to establish the relationship between the macroscopic properties of a given lattice material to its micro-discrete behaviors and structures. Further, the idea behind Eshelby’s equivalent eigenstrain principle is introduced to replace a defect distribution by an imagining displacement field (eigendisplacement) with the equivalent mechanical effect, and the triangular lattice Green's function technique is developed to solve the eigendisplacement field. The proposed method therefore allows handling of different types of microstructural defects as well as its arbitrary spatial distribution within a general and compact framework. Analytical closed-form estimations are derived, in the case of the dilute limit, for all the effective elastic moduli of stretch-dominated triangular lattices containing fractured cell walls and missing cells, respectively. Comparison with numerical results, the Hashin–Shtrikman upper bounds and uniform strain upper bounds are also presented to illustrate the predictive capability of the proposed method for lattice materials. Based on this work, we propose that not only the effective Young’s and shear moduli but also the effective Poisson’s ratio of triangular lattice materials depend on the number density of fractured cell walls and their spatial arrangements.  相似文献   

18.
Rectangular chiral lattices possess a two-fold symmetry; in order to characterize the overall behavior of such lattices, a two-dimensional orthotropic chiral micropolar theory is proposed. Eight additional material constants are necessary to represent the anisotropy in comparison with triangular ones, four of which are devoted to chirality. Homogenization procedures are also developed for the chiral lattice with rigid or deformable circles, all material constants in the developed micropolar theory are derived analytically for the case of the rigid circles and numerically for the case of the deformable circles. The dependences of these material constants and of wave propagation on the microstructural parameters are also examined.  相似文献   

19.
We study a two-dimensional triangular lattice made of bistable rods. Each rod has two equilibrium lengths, and thus its energy has two equal minima. A rod undergoes a phase transition when its elongation exceeds a critical value. The lattice is subject to a homogeneous strain and is periodic with a sufficiently large period. The effective strain of a periodic element is defined. After phase transitions, the lattice rods are in two different states and lattice strain is inhomogeneous, the Cauchy–Born rule is not applicable. We show that the lattice has a number of deformed still states that carry no stresses. These states densely cover a neutral region in the space of entries of effective strains. In this region, the minimal energy of the periodic lattice is asymptotically close to zero. When the period goes to infinity, the effective energy of such lattices has the “flat bottom” which we explicitly describe. The compatibility of the partially transited lattice is studied. We derive compatibility conditions for lattices and demonstrate a family of compatible lattices (strips) that densely covers the flat bottom region. Under an additional assumption of the small difference of two equilibrium lengths, we demonstrate that the still structures continuously vary with the effective strain and prove a linear dependence of the average strain on the concentration of transited rods.  相似文献   

20.
蜂窝材料的弹性波传播特性   总被引:2,自引:1,他引:1  
甄妮  闫志忠  汪越胜 《力学学报》2008,40(6):769-775
通过研究蜂窝材料的弹性波频散关系,分析了其弹性波传播特性. 采用基于小波理论的分析方法,将材料参数和位移均展开为双正交周期小波基函数的形式,利用Bloch定理将波动方程转化为特征值方程,求解该方程得到3种典型结构------正方、三角与六角排列的铝(Al)和聚丙烯(PP)蜂窝材料的频散关系,并进行了比较分析. 结果显示:结构形式的不同显著地影响其波动特性,而制作材料的不同则没有影响;3种结构形式都不存在完全带隙,但正方和三角形结构在一定的传播方向范围内存在方向带隙,而六角形结构则在任何方向都不存在方向带隙;与正方结构相比,三角结构在相同孔隙率下,在更广的传播方向内和更低的频率下,能产生较宽的方向带隙.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号