首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
讨论了重离子辐照生物中核碎裂效应,给出与此相关的核碎裂研究现状和进展。The effect of nuclear fragmentation discussed. The status and perspectives of this data. in the topic interactions of heavy ions with biological are presented based On calculations and molecules is experimental.  相似文献   

2.
载能重离子与高能中子在材料中能够产生相似的级联碰撞损伤,加之重离子具有大的离位损伤截面和在材料样品中低的感生放射性,载能重离子束成为模拟先进核能装置内部结构材料辐照损伤的重要手段。HIRFL能区的重离子在结构材料中的射程一般远大于晶粒尺寸,因此能够产生材料体损伤,借助小样品技术可以获得材料力学性能变化(尤其辐照脆化)的有用信息,为探讨材料辐照损伤微结构和宏观力学性能变化的关联提供了重要条件。本文简要介绍了近年来我们基于HIRFL高能离子束开展的聚变堆候选材料辐照损伤的研究,包括低活化钢的辐照脆化行为、氧化物弥散强化(ODS)铁素体钢的结构优化对于抗辐照性能的影响、不同载能粒子辐照条件下铁素体/马氏体钢的辐照肿胀数据的关联,以及高能重离子辐照的钨材料中氢同位素的滞留行为。研究表明,结合特殊的测试技术及数据分析方法,高能重离子可作为核能结构材料辐照损伤研究及评估的有效手段。Because of the similarity in cascade damage structure in materials produced by energetic heavy ions and by fast neutrons, and the high displacement rate and low induced radioactivity of samples by heavy ions, heavy ion beam becomes an important tool to simulate radiation damage by energetic neutrons in materials in advanced nuclear energy systems. The ranges of heavy ions provided by HIRFL (Heavy Ion Research Facility in Lanzhou) are generally much larger than the mean dimensions of grains in alloys candidate to advanced nuclear reactors, and is capable of producing radiation damage in bulk scale. It therefore makes possible the evaluation of change of mechanical properties including the radiation induced embrittlement from the irradiated specimens by using miniaturized specimen techniques. In the present paper, we provide an introduction of our recent studies of radiation damage of materials candidate to future fusion reactors by utilizing heavy ion beams in HIRFL.The studies include issues as follows:ductility loss of RAFM steels causes by high-energy Ne ions, impact of oxide dispersoids on the radiation resistance of ODS ferritic steels, correlation of void swelling of ferritic/martensitic steels under different particle irradiation, and behavior of deuterium retention in tungsten under irradiation with high-energy heavy ions. The results show that high-energy heavy ions can be used as a tool to efficiently investigate or evaluate radiation damage in structure materials if combined with some special test techniques and data analysis.  相似文献   

3.
Treatment planning of heavy-ion radiotherapy involves predictive calculation of not only the physical dose but also the biological dose in a patient body. The goal in designing beam-modulating devices for heavy ion therapy is to achieve uniform biological effects across the spread-out Bragg peak (SOBP). To achieve this, a mathematical model of Bragg peak movement is presented. The parameters of this model have been resolved with Monte Carlo method. And a rotating wheel filter is designed basing on the velocity of the Bragg peak movement.  相似文献   

4.
聚合物材料的快重离子辐照效应   总被引:1,自引:0,他引:1  
简要介绍了快重离子辐照损伤的特点,通过与低电离辐射粒子辐照在聚合物材料中产生的效应的类比论述了快重离子辐照在聚合物材料中产生的效应及其研究现状 ,并结合快重离子辐照效应的应用展望了该领域未来的发展.The irradiation effects in polymers induced by swift heavy ions were reviewed in comparison with that induced by low ionization particles based on the characteristics of swift heavy ion irradiations. It is shown that bond breaking and cross linking, gas releasing, amorphization and carbonization of polymers depend strongly on the electronic energy loss. Besides special effects such as alkynes production, can be induced under swift heavy ion irradiation. The perspectives...  相似文献   

5.
肿瘤治疗的重离子束物理性质研究   总被引:2,自引:0,他引:2  
重离子在肿瘤治疗方面的优势主要是由于其优越的物理性质,因此,研究其与生物体相互作用也就成为肿瘤治疗中的基本课题,介绍一些研究结果来解决人们关心的问题.The advance of tumor therapy with heavy ions beam is due to the physics quality of heavy ions.So,the investigation of heavy ions action with biological materials will be a basic task. In the paper, the investigated results show a picture to resolve some problems which attract people's attention.  相似文献   

6.
低能重离子剂量-存活率效应及其拟合模型探讨   总被引:4,自引:0,他引:4  
低能重离子注入生物体是20世纪80年代中期发展起来的一种诱变手段, 在诱变育种和放射医学等领域有巨大的应用前景。 物理辐照的剂量与存活率之间的关系是辐射生物学效应的最重要的关系之一, 低能离子与生物体相互作用的剂量 存活率曲线表现为特殊的马鞍型。 介绍了低能重离子的马鞍型剂量 存活率效应及其数学模型, 并探讨了模型拟合中存在的一些问题。 Low energy heavy ion implantation is an organism mutation method developed in middle of 1980s, which has a potential application in breeding and radiation therapy. The dose survival curve is a characteristic effect in radiobiology. Implanted with low energy heavy ions, organisms could manifest a Saddle like dose survival curve. In this article, the Saddle like dose survival effect and its modeling has been described, and several topics in model simulation are discussed.  相似文献   

7.
A new generation electron cooler has started operation in the heavy ion synchrotron CSRm which is used to increase the intensity of heavy ions. Transverse cooling of the ion beam after horizontal multi-turn injection allows beam accumulation at the injection energy. After optimization of the accumulation process an intensity increase in a synchrotron pulse by more than one order of magnitude has been achieved. In given accumulation time interval of 10 seconds, 108 particles have been accumulated and accelerated to the final energy. The momentum spread after accumulation and acceleration in the 10-4 range has been demonstrated in six species of ion beams. Primary measurements of accumulation process varying with electron energy, electron beam current, electron beam profile, expansion factor and injection interval have been performed. The lifetimes of ion beams in the presence of electron beams were roughly measured with the help of DCCT signal.  相似文献   

8.
Citation of the C60^4 is the same in the two collisions. The strong C peak produced in Ar^ -C60 must be due to the elastic collisions (nuclear stopping), because the Ar is heavy enough to knock out the C^ from C60 molecule. In general, the excitation energy depends on the projectile velocity, charge, and mass. Direct vibronic excitation by elastic collisions (nuclear stopping) is predicted for slow heavy ions, while the electronic excitation (electronic stopping) is dominant for fast ions[1]. For example, Schlatholter, et al.[2] found a strong velocity effect in collisions of He^ with fullerene in the velocity range from 0.1 to 1 a.u. With increasing velocity, the C2 evaporation process decreases and the multi-fragmentation is linearly increasing.  相似文献   

9.
Based on the GEANT4 toolkit, we study the transportation of nucleons and nuclei in tissue-like media. The fragmentation of projectile nuclei and secondary interactions of produced nuclear fragments are considered. Livermore data is used to calculate electromagnetic interaction of primary and secondary charged particles. We validate the models using experimental data of 200 MeV/u and 400 MeV/u carbon ions, interacting with tissue equivalent materials of water. The model can well describe the depth-dose distributions in water and the doses measured for secondary fragments of certain charge and certain mass number. The secondary beam fragments produced by 200 MeV/u and 400 MeV/u ^12C^6+ ions in water are investigated using the model. When the primary nuclei are in water, several neutron production mechanisms are involved. The light charged particles (p, d, t, ^3He and ^4He) and fast neutrons contribute to the dose tail behind the Bragg peak. The ^11C fragments which may be the most suitable nuclei for monitoring the energy deposition in carbon-ion therapy are also discussed.  相似文献   

10.
探讨了正常皮肤对重离子辐照急性损伤反应的耐受性, 为重离子治癌临床应用提供安全性检测的实验依据。实验前10 min, 实验猪肌肉注射复方氯胺酮1.2 mg/kg进行麻醉, 然后在兰州重离子研究装置(HIRFL)辐照终端利用12C6+束照射, 辐照剂量分别为0, 12, 21和27 Gy, 辐照分3次完成, 剂量率约为1.2 Gy/min, Bragg峰区照射, 辐照后每隔7 d对照射野拍照并活检取样, 做HE组织病理学观察。不同剂量12C6+离子束辐照实验猪皮肤后, 皮肤外观反应随辐照剂量增大而加快, 表现为肿胀和色素沉积等; 皮肤组织结构的变化明显, 上皮细胞排列紊乱、 萎缩、 空泡变性; 基本恢复正常所需时间也越长, 且都存在明显的剂量效应关系。结果表明, 辐照剂量范围为0—27 Gy时, 重离子对正常皮肤的辐照是安全的。The tolerance of the normal skin to the acute radiation injury reaction induced by heavy ion beams has been studied experimentally. The experimental pigs were injected with 1.2 mg/kg ketamine in 10 min before irradiation and were irradiated with 0, 12 , 21 and 27 Gy 12C6+ ion at a dose rate of 1.2 Gy/min at the Heavy Ion Research Facility in Lanzhou(HIRFL). The total radiation dose was finished by 3 times at Bragg Peak Region of Heavy Ion Beams.The radiation fields of skin were taken photo and performed biopsy. The contaneous tissues of radiation fields were stained by HE and examined histopatholo gical changes every seven days after irradiation. The results indicated that the cutaneous appearance reaction became more faster with radiation dosage rising and presented with swollen, melanin forming and so on after irradiated by the carbon ions at different dosage. The Pathological examination showed noticeable changes in histological and structural of experimental pigs skin, such as atrophy, vacuolation, denaturation and arranged irregularly in epithelial cells. Furthermore, the time for return to normality became longer with the increasing of radiation dosage. All indexes demonstrated correlation between the does and effects. It is concluded that the irradiation of heavy ion beams to normal skin is security when the radiation dose range is about 0—27 Gy.  相似文献   

11.
H. Ngô  Ch. Ngô 《Nuclear Physics A》1980,348(1):140-156
We have calculated the interaction potential between two heavy ions using the energy density formalism and Fermi distributions for the nuclear densities. The experimental fusion barriers are rather well reproduced. The conditions for the observation of fusion between two heavy ions are discussed. As far as the nuclear part of the interaction potential is concerned, the proximity scaling is investigated in detail. It is found that the proximity theorem is satisfied to a good extent. However, as far as the neutron excess is concerned, disagreement with the proximity potential is observed.  相似文献   

12.
The problem of reconstructing the light-impurity concentration profile in a heavy matrix in the method of resonance nuclear reactions is considered. The principal physical and experimental factors affecting the shape of the yield curve in this method are discussed in detail. An integral equation is derived by taking account of the energy spread of the initial ion beam, the energy-loss straggling, the width and shape of the resonance, and the influence of the Doppler effect. A package of programs is developed for solving this equation by using the Tikhonov regularization method, which makes it possible to correctly take into account the error in the experimental determination of the yield as well as the approximate nature of the model used to describe the interaction of the ion beam with matter. The concentration profile of oxygen ions implanted with an energy of 150 keV into a silicon single crystal is reconstructed and the effect of resonant laser radiation on diffusion in such a system is studied.Institute of Applied Physics, Academy of Sciences of the Ukraine. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 79–86, May, 1993.  相似文献   

13.
The nuclear recoil effect on the g-factor of H- and Li-like heavy ions is evaluated to all orders in αZ. The calculations include an approximate treatment of the nuclear size and the electron–electron interaction corrections to the recoil effect. As the result, the second largest contribution to the theoretical uncertainty of the g-factor values of 208Pb79+ and 238U89+ is strongly reduced. Special attention is paid to tests of the QED recoil effect on the g-factor in experiments with heavy ions. It is found that, while the QED recoil effect on the gfactor value is masked by the uncertainties of the nuclear size and nuclear polarization contributions, it can be probed on a few-percent level in the specific difference of the g-factors of H- and Li-like heavy ions. This provides a unique opportunity to test QED in a new region of the strong-coupling regime beyond the Furry picture.  相似文献   

14.
R. Brandt   《Radiation measurements》2001,34(1-6):211-219
Three examples are chosen to show the importance of SSNTD as one of the essential tools in nuclear science:

(1) Multifragmentation into more than two heavy reaction products: Starting with the observation of three heavy reaction products in the interaction of relativistic protons or 414 MeV 40Ar with actinides in the early 1960s, up to the observation of five heavy reaction products in the interaction of 2400 MeV 238U with uranium, SSNTD had a leading role in this research.

(2) In the search for superheavy elements (SHE: Z around 114): Many different techniques are used. However, SSNTD are exclusively decisive in the possible observation of SHE within the heavy element component of galactic cosmic rays.

(3) Accelerator driven systems: They are increasingly important in the discussion of energy producing nuclear power stations and in the corresponding ability to transmute long-lived poisonous radioactive materials (above all plutonium) into shorter lived fission fragments or stable nuclides. SSNTDs play an important role in the determination of the energy dependent neutron fluence in small volumes (≈cm3) or in the exact beam profile determinations of the primary proton beams.

This contribution ends with an outlook into possible future fields of physics research: With the advent of a new generation of relativistic heavy ion accelerators, such as the NUCLOTRON at the JINR in Dubna, Russia, and RHIC in Brookhaven in the United States, one can continue to study (and finally confirm or disprove) all phenomena mentioned already, as well as additional controversial phenomena, such as “enhanced nuclear cross-sections over short distances”, called colloquially “anomalons”. Again SSNDT can be used in at least a twofold manner as an important tool: (a) the enhanced neutron production with 12C ions or heavier ions in thick targets at energies above approximately 50 GeV and (b) the reduced “mean-free-path” of secondary fragments produced by the same heavy and energetic ions.  相似文献   


15.
A kinetic theory of passage of multiply charged heavy ions through crystals is developed that allows for diffusion in the transverse momentum space and ion-crystal charge exchange. The theory provides an adequate explanation for the observed angular distributions of heavy ions passing through oriented crystals, makes it possible to calculate the partial angular distributions of different charge states, and treats the discovered effects of “cooling” and “heating” of channeled ion beams in physical terms. The angular and spatial distribution of channeled ions with different energies is calculated. Whether a channeled beam of multiply charged heavy ions will be cooled or heated is related to the dependence of the electron capture and loss probabilities on the impact parameter when the ions interact with atomic chains. This interaction governs the run of the angular and spatial distribution of the channeled ion charge.  相似文献   

16.
It has long been recognized that galactic cosmic rays are of such high energy that they tend to pass through available shielding materials resulting in exposure of astronauts and equipment within space vehicles and habitats. Any protection provided by shielding materials result not so much from stopping such particles but by changing their physical character in interaction with shielding material nuclei forming, hopefully, less dangerous species. Clearly, the fidelity of the nuclear cross-sections is essential to correct specification of shield design and sensitivity to cross-section error is important in guiding experimental validation of cross-section models and database. We examine the Boltzmann transport equation which is used to calculate dose equivalent during solar minimum, with units (cSv/yr), associated with various depths of shielding materials. The dose equivalent is a weighted sum of contributions from neutrons, protons, light ions, medium ions and heavy ions using the ICRP-60 LET dependent quality factors. We investigate the sensitivity of dose equivalent calculations due to errors in nuclear fragmentation cross-sections. We do this error analysis for all possible projectile-fragment combinations (14,365 such combinations) to estimate the sensitivity of the shielding calculations to errors in the nuclear fragmentation cross-sections. Numerical differentiation with respect to the cross-sections will be evaluated in a broad class of materials including polyethylene, aluminum and copper. We will identify the most important cross-sections to ensure adequate experimental study and evaluate their impact on propagated errors in shielding estimates.  相似文献   

17.
Interactions of relativistic heavy ions with total energies above 30 GeV in thick Cu and Pb targets (≥ 2 cm) have been studied with various techniques. Radiochemical irradiation experiments using thick Cu targets, both in a compact form or as diluted “2π-Cu targets” have been carried out with several relativistic heavy ions, such as 44 GeV 12C (JINR, Dubna, Russia) and 72 GeV 40Ar (LBL, Berkeley, USA). Neutron measuring experiments using thick targets irradiated with various relativistic heavy ions up to 44 GeV 12C have been performed at the JINR. In addition, the number of “black prongs” in nuclear interactions (due to protons with energies less than 30 MeV and emitted from the target-like interaction partner at rest) produced with 72 GeV 22Ne ions in nuclear emulsion plates has been measured in the first nuclear interaction of the primary 22Ne ion and in the following second nuclear interaction of the secondary heavy (Z > 1) ion. Some essential results have been obtained. (1) Spallation products produced by relativistic secondary fragments in interactions ([44 GeV 12C or 72 GeV 40Ar] + Cu) within thick copper yield fewer products close to the target and many more products far away from the target as compared to primary beam interactions. This applies also to secondary particles emitted into large angles (Θ > 10°). (2) The neutron production of 44 GeV 12C within thick Cu and Pb targets is beyond the estimated yield as based on experiments with 12 GeV 12C. These rather independent experimental results cannot be understood within well-accepted nuclear reaction models. They appear to present unresolved problems. The text was submitted by the authors in English.  相似文献   

18.
重离子束应用在治疗肿瘤上具有优越的深度剂量分布特点.发展精确计算剂量的物理模型理论成为其应用的关键,为此,首先从生物细胞的化学组成成分、放射生物学的特点和物理剂量计算的要求对理论计算的介质进行了选择.利用现有计算核反应部分截面和修正的总截面经验公式,同时考虑了不同影响理论计算的因素,提出了中能重离子理论计算深度剂量分布的方法,其计算结果与实验数据符合很好,可应用在重离子治癌和生物学效应研究中.  相似文献   

19.
A classical dynamical model is applied to the deep inelastic reactions between heavy ions. Assuming that the range of the nuclear interaction depends on the intrinsic excitation energies, the sharp angular distribution and the large energy loss in the quasi-fission reaction are explained systematically.  相似文献   

20.
The reflection of light ions from heavy random targets has been calculated within the single-collision approximation on the basis of essentially the same physical model as Schiøtt's adaptation of the LSS range theory to light ions. An accurate effectivepower approximation has been utilized to evaluate a number of physical quantities relating to reflected ions under the assumption of Thomas-Fermi scattering. Analytical results as well as universal curves are presented for reflected-energy spectra integrated over ejection angle, particle and energy reflection coefficients, and quantities derived from these. Good agreement with experimental results is obtained for ε?, where ε is Lindhard's energy parameter. The results are compared with those from previous calculations on the basis of transport theory and computer simulation. An estimate is given of the single-collision tail of the light-ion range profile. Qualitative corrections for beam attenuation and recoil energy loss are presented in appendices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号