首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Data envelopment analysis models usually split decision making units into two basic groups, efficient and inefficient. Efficiency score of inefficient units allows their ranking but efficient units cannot be ranked directly because of their maximum efficiency. That is why there are formulated several models for ranking of efficient units. The paper presents two original models for ranking of efficient units in data envelopment analysis—they are based on multiple criteria decision making techniques—goal programming and analytic hierarchy process. The first model uses goal programming methodology and minimizes either the sum of undesirable deviations or maximal undesirable deviation from the efficient frontier. The second approach is analytic hierarchy process model for ranking of efficient units. The two presented models are compared with several super-efficiency models and other approaches for ranking decision making units in DEA models including definitions based on distances from optimistic and pessimistic envelopes and cross efficiency evaluation models. The results of the analysis by all presented models are illustrated on a real data set—evaluation of 194 bank branches of one of the Czech commercial banks.  相似文献   

2.
3.
In this paper a multiple objective linear programming (MOLP) problem whose feasible region is the production possibility set with variable returns to scale is proposed. By solving this MOLP problem by multicriterion simplex method, the extreme efficient Pareto points can be obtained. Then the extreme efficient units in data envelopment analysis (DEA) with variable returns to scale, considering the specified theorems and conditions, can be obtained. Therefore, by solving the proposed MOLP problem, the non-dominant units in DEA can be found. Finally, a numerical example is provided.  相似文献   

4.
Data envelopment analysis (DEA) evaluates the performance of decision making units (DMUs). When DEA models are used to calculate efficiency of DMUs, a number of them may have the equal efficiency 1. In order to choose a winner among DEA efficient candidates, some methods have been proposed. But most of these methods are not able to rank non-extreme efficient DMUs. Since, the researches performed about ranking of non-extreme efficient units are very limited, incomplete and with some difficulties, we are going to develop a new method to rank these DMUs in this paper. Therefore, we suppose that DMU o is a non-extreme efficient under evaluating DMU. In continue, by using “Representation Theorem”, DMU o can be represented as a convex combination of extreme efficient DMUs. So, we expect the performance of DMU o be similar to the performance of convex combination of these extreme efficient DMUs. Consequently, the ranking score of DMU o is calculated as a convex combination of ranking scores of these extreme efficient DMUs. So, the rank of this unit will be determined.  相似文献   

5.
The purpose of this study is to develop a new method which provides for given inputs and outputs the best common weights for all the units that discriminate optimally between the efficient and inefficient units as pregiven by the Data Envelopment Analysis (DEA), in order to rank all the units on the same scale. This new method, Discriminant Data Envelopment Analysis of Ratios (DR/DEA), presents a further post-optimality analysis of DEA for organizational units when their multiple inputs and outputs are given. We construct the ratio between the composite output and the composite input, where their common weights are computed by a new non-linear optimization of goodness of separation between the two pregiven groups. A practical use of DR/DEA is that the common weights may be utilized for ranking the units on a unified scale. DR/DEA is a new use of a two-group discriminant criterion that has been presented here for ratios, rather than the traditional discriminant analysis which applies to a linear function. Moreover, non-parametric statistical tests are employed to verify the consistency between the classification from DEA (efficient and inefficient units) and the post-classification as generated by DR/DEA.  相似文献   

6.
Data envelopment analysis (DEA) model selection is problematic. The estimated efficiency for any DMU depends on the inputs and outputs included in the model. It also depends on the number of outputs plus inputs. It is clearly important to select parsimonious specifications and to avoid as far as possible models that assign full high-efficiency ratings to DMUs that operate in unusual ways (mavericks). A new method for model selection is proposed in this paper. Efficiencies are calculated for all possible DEA model specifications. The results are analysed using Principal Component Analysis. It is shown that model equivalence or dissimilarity can be easily assessed using this approach. The reasons why particular DMUs achieve a certain level of efficiency with a given model specification become clear. The methodology has the additional advantage of producing DMU rankings. These rankings can always be established independently of whether the model is estimated under constant or under variable returns to scale.  相似文献   

7.
In the use of peer group data to assess individual, typical or best practice performance, the effective detection of outliers is critical for achieving useful results, particularly for two-stage analyses. In the DEA-related literature, prior work on this issue has focused on the efficient frontier as a basis for detecting outliers. An iterative approach for dealing with the potential for one outlier to mask the presence of another has been proposed but not demonstrated. This paper proposes using both the efficient frontier and the inefficient frontier to identify outliers and thereby improve the accuracy of second stage results in two-stage nonparametric analysis. The iterative outlier detection approach is implemented in a leave-one-out method using both the efficient frontier and the inefficient frontier and demonstrated in a two-stage semi-parametric bootstrapping analysis of a classic data set. The results show that the conclusions drawn can be different when outlier identification includes consideration of the inefficient frontier.  相似文献   

8.
In this paper, we conduct simulation experiments to evaluate the performance of two alternative uses of the super-efficiency procedure in Data Envelopment Analysis (DEA). The first is for outlier identification and the second is for ranking efficient units. We find that the ranking procedure does not perform satisfactorily. In fact, the correlations between the true efficiency and the estimated super-efficiency are negative for the subset of efficient observations, and the conventional DEA model performs as well as the super-efficiency DEA model when all observations are considered. However, when data are contaminated with outliers, the use of the super-efficiency model to identify and remove outliers results in more accurate efficiency estimates than those obtained from the conventional DEA estimation model.  相似文献   

9.
Alirezaee and Afsharian [1] have proposed a new index, namely, Balance Index, to rank DMUs. In this paper, we will use their examples to illustrate that the proposed index is not stable. As a result, the corresponding rankings are also unstable. Then we analyze where an error occurs in the new method for complete ranking of decision making units and amend it by introducing the Maximal Balance Index. The numeral example reports the reasonability of our methods.  相似文献   

10.
Data envelopment analysis (DEA) is a popular technique for measuring the relative efficiency of a set of decision making units (DMUs). Fully ranking DMUs is a traditional and important topic in DEA. In various types of ranking methods, cross efficiency method receives much attention from researchers because it evaluates DMUs by using self and peer evaluation. However, cross efficiency score is usual nonuniqueness. This paper combines the DEA and analytic hierarchy process (AHP) to fully rank the DMUs that considers all possible cross efficiencies of a DMU with respect to all the other DMUs. We firstly measure the interval cross efficiency of each DMU. Based on the interval cross efficiency, relative efficiency pairwise comparison between each pair of DMUs is used to construct interval multiplicative preference relations (IMPRs). To obtain the consistency ranking order, a method to derive consistent IMPRs is developed. After that, the full ranking order of DMUs from completely consistent IMPRs is derived. It is worth noting that our DEA/AHP approach not only avoids overestimation of DMUs’ efficiency by only self-evaluation, but also eliminates the subjectivity of pairwise comparison between DMUs in AHP. Finally, a real example is offered to illustrate the feasibility and practicality of the proposed procedure.  相似文献   

11.
The cross-efficiency method is generally utilized to rank decision-making units (DMUs) in data envelopment analysis (DEA) based on peer-evaluation logic. This brief note provides a method of using the available information from the linear program outputs to calculate the ranking of all DMUs with fewer computations and offers an alternative interpretation to the cross-efficiency method based on slack analysis in DEA.  相似文献   

12.
This paper provides a new structure in data envelopment analysis (DEA) for assessing the performance of decision making units (DMUs). It proposes a technique to estimate the DEA efficient frontier based on the Arash Method in a way different from the statistical inferences. The technique allows decisions in the target regions instead of points to benchmark DMUs without requiring any more information in the case of interval/fuzzy DEA methods. It suggests three efficiency indexes, called the lowest, technical and highest efficiency scores, for each DMU where small errors occur in both input and output components of the Farrell frontier, even if the data are accurate. These efficiency indexes provide a sensitivity index for each DMU and arrange both inefficient and technically efficient DMUs together while simultaneously detecting and benchmarking outliers. Two numerical examples depicted the validity of the proposed method.  相似文献   

13.
针对传统区间数据包络分析方法,在确定每一个决策单元区间效率的上界和下界时,存在的评价尺度不一致且计算复杂等问题,本文提出了一种同时最大化所有决策单元的效率上界和下界的公共权重区间DEA模型,并给出了一种考虑决策者偏好信息的可能度排序方法,用以解决区间效率的全排序问题。最后,以中国大陆11个沿海省份工业生产效率测算为例说明了所提方法的有效性和实用性。  相似文献   

14.
Data envelopment analysis (DEA) is a linear programming problem approach for evaluating the relative efficiency of peer decision making units (DMUs) that have multiple inputs and outputs. DMUs can have a two-stage structure where all the outputs from the first stage are the only inputs to the second stage, in addition to the inputs to the first stage and the outputs from the second stage. The outputs from the first stage to the second stage are called intermediate measures. This paper examines relations and equivalence between two existing DEA approaches that address measuring the performance of two-stage processes.  相似文献   

15.
Data envelopment analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs). Recently DEA has been extended to examine the efficiency of two-stage processes, where all the outputs from the first stage are intermediate measures that make up the inputs to the second stage. The resulting two-stage DEA model provides not only an overall efficiency score for the entire process, but as well yields an efficiency score for each of the individual stages. Due to the existence of intermediate measures, the usual procedure of adjusting the inputs or outputs by the efficiency scores, as in the standard DEA approach, does not necessarily yield a frontier projection. The current paper develops an approach for determining the frontier points for inefficient DMUs within the framework of two-stage DEA.  相似文献   

16.
We introduce in this paper the global efficiency approach as a means to improve the discriminating power of Data Envelopment Analysis (DEA). To discriminate further among the DEA efficient units, we deal only with the units that can maintain their efficiency score under common weighting structures. Then we proceed further to ranking the whole set of DEA efficient units. We compare the global efficiency approach with the multi-criteria DEA and the cross-efficiency approaches on the basis of characteristic numerical examples drawn from the literature.  相似文献   

17.
Additive efficiency decomposition in two-stage DEA   总被引:1,自引:0,他引:1  
Kao and Hwang (2008) [Kao, C., Hwang, S.-N., 2008. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research 185 (1), 418–429] develop a data envelopment analysis (DEA) approach for measuring efficiency of decision processes which can be divided into two stages. The first stage uses inputs to generate outputs which become the inputs to the second stage. The first stage outputs are referred to as intermediate measures. The second stage then uses these intermediate measures to produce outputs. Kao and Huang represent the efficiency of the overall process as the product of the efficiencies of the two stages. A major limitation of this model is its applicability to only constant returns to scale (CRS) situations. The current paper develops an additive efficiency decomposition approach wherein the overall efficiency is expressed as a (weighted) sum of the efficiencies of the individual stages. This approach can be applied under both CRS and variable returns to scale (VRS) assumptions. The case of Taiwanese non-life insurance companies is revisited using this newly developed approach.  相似文献   

18.
For multivariate copula-based models for which maximum likelihood is computationally difficult, a two-stage estimation procedure has been proposed previously; the first stage involves maximum likelihood from univariate margins, and the second stage involves maximum likelihood of the dependence parameters with the univariate parameters held fixed from the first stage. Using the theory of inference functions, a partitioned matrix in a form amenable to analysis is obtained for the asymptotic covariance matrix of the two-stage estimator. The asymptotic relative efficiency of the two-stage estimation procedure compared with maximum likelihood estimation is studied. Analysis of the limiting cases of the independence copula and Fréchet upper bound help to determine common patterns in the efficiency as the dependence in the model increases. For the Fréchet upper bound, the two-stage estimation procedure can sometimes be equivalent to maximum likelihood estimation for the univariate parameters. Numerical results are shown for some models, including multivariate ordinal probit and bivariate extreme value distributions, to indicate the typical level of asymptotic efficiency for discrete and continuous data.  相似文献   

19.
Data Envelopment Analysis (DEA) is a very effective method to evaluate the relative efficiency of decision-making units (DMUs). Since the data of production processes cannot be precisely measured in some cases, the uncertain theory has played an important role in DEA. This paper attempts to extend the traditional DEA models to a fuzzy framework, thus producing a fuzzy DEA model based on credibility measure. Following is a method of ranking all the DMUs. In order to solve the fuzzy model, we have designed the hybrid algorithm combined with fuzzy simulation and genetic algorithm. When the inputs and outputs are all trapezoidal or triangular fuzzy variables, the model can be transformed to linear programming. Finally, a numerical example is presented to illustrate the fuzzy DEA model and the method of ranking all the DMUs.  相似文献   

20.
Recently new models of data envelopment analysis (DEA) were introduced that incorporate production trade-offs between inputs and outputs or based on them weight restrictions. In this paper, we develop a computational procedure suitable for the practical application of such models. We show that the standard two-stage optimisation procedure used in DEA to test the full efficiency of units and identify their efficient targets may work incorrectly in the new models. The modified procedure consists of three stages: the first evaluates the radial efficiency of the unit, the second identifies its efficient target, and the third its reference set of efficient peers. Each stage requires solving one linear program for each unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号